This is the Honors Section of PHYS-2050

Many of you may be in the Honors Seminar HNRS-2900 (Math & Physics)
This meets starting Wednesday 9 January 2008 in 2211 Rood Hall

PHYS-2060 (Laboratory) is a separate course.
You must be registered for PHYS-2060 to take the lab.
Labs start the second week of class (Tuesday 15 January 2008); check outside lab door.

Three-Times Rule: It is University policy that the number of times a course can be taken is limited to three (including withdrawals). A student whose current enrollment is in violation of this policy must drop this course as soon as possible and no later than the deadline for no refund of tuition.

C-or- Better Requirement: It is Department policy that a grade of “C” or better in a prerequisite course is required before enrollment is permitted in the next-sequence course. A student who does meet this requirement must drop this course as soon as possible and no later than the no-refund deadline.

Required Texts and Supplies:
Physics for Scientists and Engineers (WMU/7th edition) / Serway and Jewett
Volume 1 · Henceforth known as “Serway” in class.

Standard inexpensive calculator with trig functions and logs. **NO TI-92/89MACHINES!**

Optional Materials: None, really. If you require an integral table or other math handbook, CRC Press’ Standard Math Tables (or whatever it is currently called) is highly recommended; this is the source for the integral tables in the textbook. Study guides from Schaum’s, or the textbook’s A Student Solutions Manual and Study Guide, are available (or can be ordered) from the bookstore. These may be helpful for some people, but are not required and have not been used in the preparation of this course. There are also study software packages for Physics, but I haven’t seen one that looked worth the money; so you might as well work the assigned Homework!

Prerequisites: MATH-1220 (or equivalent) is required for PHYS-2050. A working knowledge of calculus, algebra, geometry and trigonometry is expected for this course. Since Physics is a kind of applied mathematics, if you feel uncomfortable about your math skills, don’t delay if you need help!

† This Syllabus may also cover anyone enrolled in PHYS-2140 Mechanics and Heat Problems (Pre-Requisites PHYS-1130 and MATH-1230/1710 or equivalent) - PHYS-2140 is the one credit hour conversion course from the Algebra Physics sequence to the Calculus Physics sequence. To register, you must contact the Physics Dept. Office, 1120 Everett Tower. Other than registration, the PHYS-2140 course is the same as PHYS-2050.
Exam and Quiz Policy

Exam Schedule: There will be three hour exams, tentatively scheduled for: 31 January 2008, 28 February 2008 and 3 April 2008 – all these are on THURSDAY. Each exam will cover about three weeks of material and you can have the entire period to work. These exams will be closed-book, but you will be allowed to bring a FORMULA CARD. On this “card” (includes cards, paper, spiral bound note cards), you may write down any formula, physical constant, definition or a brief note on any historical figure that you feel is relevant or useful; a sketch or description of the setup is allowed, but you may not include worked out problems. Formula cards will be turned in with the exam, with a deduction for an illegal formula card. Each exam is worth 100,000 points (see note below on Star Points). Scores may sometimes be graded on an “all-or-nothing” basis and cannot be made up, though up to three zeroes can be dropped.

Work To Hand In: All work that is to be handed in (which includes Quizzes, Exams, Papers, Special Topics) must include your name (you’d think that would be obvious, but…). – PAPERS WITHOUT NAME AND SECTION NUMBER MAY NOT BE GRADED! – Staples: Any papers turned in that are supposed to be stapled, but aren’t, are subject to a 3000 point penalty. Any papers turned in with a fold-and-tear corner will get an automatic 5000 point penalty. Late Papers: lose 10% (one letter grade) per day, but it is better to do the work at all than turn in nothing.

Staples: There will be outside reading and writing assignments: this includes a science literacy opinion paper on a book from a booklist that will be provided in the first week. Complete instructions will be in the booklist handout. The paper is due Thursday April 10th by 5pm. There will be a penalty for each day a paper is late. A grace period is included in the schedule. Be sure to read the assignment at the end of the booklist!

Quiz Schedule: Expect to have a quiz twice a week (starting January 10th). Quiz problems will be based on the assigned homework. UNITS, SIGN, POWER OF TEN and VALUE of your ANSWER will all be evaluated on numerical problems. Reasonable units and significant figures are required. You must CIRCLE your ANSWER. Work must be shown to receive credit, though the work itself may not be evaluated. There will be twenty-three 15,000 point quiz problems; the lowest three will be dropped. There will be no further adjustment of quiz grades. Quizzes may sometimes be graded on an “all-or-nothing” basis and cannot be made up, though up to three zeroes can be dropped.

Writing Assignments: For Fall 2007, the WMU Physics Department decided to work with the publisher of the 7th edition of Serway. Rather than just buying the whole book, we’ve cherry picked the chapters for the two semesters of PHYS-2050 and PHYS-2070, to reflect the PhysTEC revisions to the regular PHYS-2050 course. This, however, is the Honors Section of PHYS-2050 and we may work outside the book, so to speak. WMU Edition Volume I has chapters 1-18. Right now the syllabus still contains notations for chapters 19-22. Don’t worry about it.

HomeWork: Serway offers two kinds of problems at the end of each chapter: Conceptual Questions and Problems. The Conceptual Questions tend to be descriptive thought questions, rather than round-equations-into-your-calculator problems. You should skim through these as a review, to see if you understand the material. Most quantitative problems keyed to each section, as well as Additional Problems, which tend to cut across sections. Each Problem has been coded in the text: black, blue and red (or easy to hard). Which problems should you do for homework? Well… all of them. Or at least all that you need to do. It’s part of the daily work you need to do to keep up. The study of Physics at this level is also a study of problem solving and practicing the manipulation of variables and formulas. This H.W. will not be turned in, but you will be responsible for it. Later on, you will start receiving Sample Exams – actual Dr. Phil PHYS-2050 exams given to actual Dr. Phil PHYS-2050 students. You are expected to be able to do all these, but do not waste too much time if you can’t see how to solve a problem. Odd numbered Serway problems have answers given in the back of the book, but you can always ask Dr. Phil to check out specific questions. It does no good to just hand out detailed solutions for all the problems, because then people tend not to actually work on the H.W., they just study the solutions. That’s like reading in order to run a race.
In addition to the normal scoring of the 3 Exams and the Final, each of these tests will have four parts designated with a star (*). There are 100,000 Star Points that will be awarded on a primarily all-or-nothing basis in addition to any partial credit you earn during normal test scoring (20,000 Star Points on each regular Exam; 40,000 Star Points on the Final). All Star Problems will involve the use of calculus, and Star Points will be awarded on the basis of a correct calculus set-up and evaluation (if required). A quick analysis of the points and the grading scale, should convince you that it will be impossible to get an “A” (and hard to get a “C”) on the course on the basis of using algebra, trig and geometry alone. This is intended to keep everyone honest, including Dr. Phil, and to identify some of the key points of the course. You may be very surprised to find that working, practical calculus is not like what you did in math class!

The Professional Concerns Committee of the Faculty Senate recommends that all faculty include the following paragraph in each syllabus that they prepare for the upcoming semester:

“You are responsible for making yourself aware of and understanding the policies and procedures in the Undergraduate (pp. 274-276) [Graduate (pp. 25-27)] Catalog that pertain to Academic Honesty. These policies include cheating, fabrication, falsification and forgery, multiple submission, plagiarism, complicity and computer misuse. If there is reason to believe you have been involved in academic dishonesty, you will be referred to the Office of Student Conduct. You will be given the opportunity to review the charge(s). If you believe you are not responsible, you will have the opportunity for a hearing. You should consult with me if you are uncertain about an issue of academic honesty prior to the submission of an assignment or test.”

Sorta Important Stuff

The First Thing You Should Do Each Day When You Come Into Class…

(after getting comfortable, turning off your cellphone and pulling out your notebook and pencil)

…Is To Take OUT Your Calculator And Have It Ready At All Times

(it doesn’t do you any good all closed up in your book bag, or at home)

Grading:

The process and the concepts are so important, that getting the correct numerical answer is sometimes the least important part of a calculation. Therefore, there will be some partial credit on some exam problems for taking the correct line of reasoning, even if the answer is wrong. This does not excuse you from taking reasonable care in a calculation. (Grading this way is very labor intensive, but your patience will be rewarded.) You can argue all day long that you had the “right answer”, but if you did not show sufficient work or physically correct work, you will not get the points. Your answer is a dialogue between you and the graders – it must be intelligible and “legal” math and physics – we cannot grade “what you meant”.

Units, Numbers and other parts

For a business that relies so heavily on numbers, it is very rare that the answer to a Physics problem is just a number, like “five” – “Five what?” is usually a reasonable question, so units are a very important part of a number. Units will save your life, if you bother to keep them with their numbers and learn to reconcile them. Otherwise, you will be doomed to getting useless results because you plug 9.81 m/s² into a length or a velocity, or end up with a resistance in meters instead of ohms.

So many errors in Physics problems can be traced back to the use of the wrong “thing” in a variable, sometimes to the point where even I can’t figure out what you were doing, that we are going to be very, very, very hard on units this semester. So here’s the new rule:

UNITS ARE TO BE CONSIDERED PERMANENTLY STAPLED TO A NUMBER.

Every time you write down a number, you write down the units as well. This means (a) when you write down the numbers in the beginning of the problem, (b) when you write down your answer and (c) most importantly, what Dr. Phil calls Internal Units – that means when you are writing down a number in an algebraic expression before you haul out your calculator. There will be no alternative here, because otherwise you won’t be scoring any points here on quizzes and exams. You’ll notice that Dr. Phil always includes units with his numbers on the blackboard – take that as a hint.

Likewise, the sign of an answer can be very important in some problems. Your bank has no trouble with telling the difference between having a $500 checking account balance and being overdrawn with a -$500 balance, for example; these are very different answers. One must also watch out for powers of 10, since the metric system is based on a decimal system, just like the American money system. Another number problem: 4.97 is a number that is about five, but 4.97 is not the same as 5.00. Your calculator is not very intelligent, so you must determine which numbers in the display represent significant figures, based on the actual numbers you used as input to your calculations. This is particularly important in lab; in lecture and discussion, you will find that we tend to use “reasonable” numbers in answers. I cannot guarantee that you will get exactly the same answer as I do, since the order you do math operations and the brand of calculator can have some impact on the final result. As a general rule, do not truncate or round numbers too much in intermediate calculations or dump your entire calculator display into a final answer.

Also – we do not normally deal in fractions. 1 2/3 is 1.67 to three significant figures.

Late Quizzes:

Most take-home quizzes can be turned in by 5pm on their due date if they are not ready to turn in at class time. Some take-home quizzes may be made up, provided the solutions have not been given in class or posted on the class web site. If Dr. Phil starts going over a quiz problem you have not turned in, please turn it in immediately. If two or more quizzes are being turned in on any given day, PLEASE make sure that they are in separate piles.
“My Side” of the Table

It’s a small point, but the front lab table is divided in Dr. Phil’s mind between “my side” and “your side”. Please do not ever pick up papers from Dr. Phil’s side of the table. Sometimes they are not for your class, sometimes they may be your papers that have not yet been recorded in my grading spreadsheets. (If they are never recorded, then they are still 0’s.) You may think that it makes sense to grab graded papers from both sides of the lab table, but that blocks my access to my piles and the blackboard, which slows things down for everyone. So, “stay on your own side of the table” will make things move smoother for all.

What’s My Grade?

Part of keeping up with the workload in PHYS-2050 is knowing where you stand in the class. There is a delay, however, between when work is handed in and when it gets back to you. We endeavor to get Exams back to you within one week of when they are given. Quizzes have tended to get batched and backlogged – a new system since Spring 2002 sometimes gets quizzes turned around faster. Grades are recorded in a Microsoft Excel 7.0 spreadsheet. After the first exam is graded, Dr. Phil will create The Predictor, which typographically fills in all the final grade columns with estimated answers, even though most of the work of the semester has not been actually done yet. The Predictor uses actual Exam, Star and Quiz scores to estimate what their final values will be, based on your past performance. By the time 7 to 10 quiz grades are recorded, The Predictor will start dropping your three current lowest-quiz grades. The Topics (such as the Book Report) are automatically given the lowest “B” grade of 85%. Once The Predictor is set up, you can always stop by office and see what your current projected grade is, or send me e-mail (along with your PHYS-2050 Personal ID number [PID]) and I will e-mail your current projected grade. Posting grades on Dr. Phil’s office door or at the back of the lecture room is usually done around the exams, sorted by your 5-digit PID, but this information has a short shelf-life. Check the Post date on the printout; During Spring 2001, someone kept stealing (or just throwing out) my printouts, which is very odd behavior. In Fall 2005, Dr. Phil experimented with posting estimated and final grades on the website.

What’s The Answer?

I am currently making available solutions to the Exams, so that you will know what the correct (or at least Dr. Phil’s version) answer to a problem is. Most quizzes will be over the next class period, again so that you will have the correct answer. (Check the class website!) This is easiest for the in-class quizzes—take home quizzes have a tendency to dribble in over a few days, so there’s no point in giving people the answer before they get their papers in! I do not usually give out answer sheets to the Sample Exam Problems, on the theory that you don’t have the answers on a real exam, so you need to learn how to PTPHP – and it encourages students to study together, compare notes or even come to Dr. Phil’s office hours. Sometimes I feel like the Maytag™ repairman – it’s lonely in my office at office hours.

Extra Credit:

I don’t “do” extra credit. Students who wish extra credit primarily do so because they aren’t using their time effectively already, so why would I wish you to divert even more of your valuable time on additional work?

Interesting (?) Thoughts

Natural Philosophy

Physics was once called Natural Philosophy in colleges and the term has some very good connotations. Physics is a study of Nature and how Nature operates. Physics is often a philosophical arena, where meaning and understanding are gleaned, debated and tested from observations of the real world, experiments in the laboratory, with theories and long “what-if?” and “what-about?” sessions. I often suggest to students that “We are here to change the way that you think” and this is borne out in the many students who comment at the end of the course that they do think about and see the world is a different way. Many tell of how sick to death their friends and family are to here them babble on about “this is how that works” or “don’t you wonder why that happened?” Most people go through life not thinking

those thoughts or asking those questions. (Or else believe that it must be too difficult for them to understand.)

The Million Point Grading Scale

You may have noticed the outrageous number of points assigned to our workload. Over the years I have found that many people don’t have a good feel for very large and very small numbers, things we will be using a lot in PHYS-2050, so I created The Million Point Grading Scale as a kind of numerical literacy device. It breaks the usual mold of 100 point tests and eliminates haggling for points. Anyone who wants “a” point, can have one. You must complete all elements of the course in order to earn the rest of your points, however.

Common Sense

It is an asset to make a guess about what is going to happen in a problem. However, you must watch out that you let the Physics do its work and not talk yourself into a mistaken notion. It is sometimes thought that good Physics thinking is just good Common Sense. All of us have some idea how at least part of the world works, but Common Sense doesn’t always seem to be so Common among us, or so Sensible. Instead, we will work to a logical model of how things work, one that is independent of personal feeling (red cars don’t really go faster than blue ones, but they get more tickets). This is not easily done, since most students don’t get very much Physics education early on; a survey done a few years ago suggests that even students in graduate physics classes tend to write one thing on a test paper and believe in their “common sense experience” in everyday life. But don’t despair – there are a lot of common sense experiences that do work in Physics under the appropriate conditions, such as “what goes up must come down.”

Bad Chapter Karma

From Chapter 1 to 18 in Serway is eighteen chapters. From January 7th to April 18th is less than fourteen weeks of classes. It shouldn’t take advanced calculus to figure out that there is a mismatch here – that we can’t quite manage only one chapter a week. On the other hand, we may adjust the topics list as we go, and we might drop some sections or chapters as we go along, or at the very least, touch on some topics without devoting critical exam and study time on them. Note the chapter lists that go with each exam. And two of the chapters really take more than one week to wade through. On the other hand, we may adjust the topics list as we go, and we might drop some sections or chapters as we go along, or at the very least, touch on some topics without devoting critical exam and study time on them. Dr. Phil intends to try to keep up on schedule better! Note the chapter lists that go with each exam.

Concepts

It is possible to teach an entire course in “Conceptual Physics”, where one hardly ever sees a number or an equation. This isn’t one of those courses, because the equations and the numbers have so much interesting meaning attached to them, that it would be a shame to leave them out. But it is very easy to lose sight of the Concepts amongst all the math. Short answer conceptual questions on exams should be almost “freebies”, but usually aren’t because the most basic definitions are forgotten in the cram for the details of specific cases. Learn the definitions and the general concepts, and the specific cases will take care of themselves.

Vocabulary

It is not surprising to think that a science such as Physics should have developed a vocabulary of its own. But Physics tries to be a precise description of the world and so therefore the meanings of many ordinary everyday words must take on a new precision of their own, too. We will see that mass and weight are very different, even though they might seem to describe the same thing. Or that work has a special definition, a precise meaning, that is understandable to physicists and physics students around the world. Indeed, the concept of doing “no work” in Physics is very different from the usage we have in everyday speech.

Equations
Physicists are capable of driving other people crazy, as we can happily work all day with equations without ever once feeling the need to plug in a number. The concepts and the theory frame the question and the answer, it is the equations that supply the tools for our solution. In reducing numbers down to letters, we are limited by the number of upper and lower case letters in the English and Greek alphabets. Therefore, what “v” might represent in any equation must not only be known, but “v” and “V” are also likely to be different from each other, as is “\(\nu\)” (Greek lower-case nu).

Formula Card

You will be allowed to bring your very own formula card to quizzes and exams. This being a “serious” physics course, you are responsible for maintaining this formula card. Dr. Phil will give you constants during a quiz or an exam, such as \(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2\), but he will not give you formulas. Factory made study sheets and formula cards from the bookstore are not allowed, because they are not your work.

Theory

The theories presented in this course have a long and colorful history that is interesting in its own right. Much like case law to the legal profession, current physics has “tried and proven” over the years. Unlike law, however, it isn’t how slick or well paid your physicist is versus mine, here the burden of proof falls on experimental verification. Even so, “proof” is too strong a word for some in science, rather one might say that something is true within these limitations. Much of what goes on at the forefront of Physics today involves the same topics that we will cover in PHYS-2070. However, much of the details of Modern Physics is left for a third semester course – PHYS-3090. But everything depends on knowing the material from PHYS-2050, and knowing it well. You will be astonished at how much you’ll need in 2070!

Experiment

Years ago I saw a T-shirt that said “If it’s Green and Wriggles, it’s Biology; If it Stinks, it’s Chemistry; And if it doesn’t work, it’s Physics”. We say that the theory developed in Physics has been verified by Experiment, but surely we cannot mean Physics Lab! Still-reading, thinking and calculating can only take you so far; sometimes you have to see and measure for yourself. The purpose of lab is to put the scientific method into practice and see where event, observation and theory meet. But remember! The theories we develop in class has simplified and “cleaned” up Nature, so we cannot expect perfect experimental results; but careful and repeatable experiments will go a long way to helping you “see” the Physics.

Time Management (Studying)

Since we have a lot of material to cover, and it is probable that you won’t have time to work out ahead of time every Physics problem in the book, it becomes important to manage your study time wisely. It is very common to end up spending hours banging your head against one stupid little problem. Mostly this involves doing the same solution over and over again, or dragging in every conceivable (and inappropriate) formula under the sun. Most of the textbook problems have only one or two elements in them, so in general you may need to simplify your work, not make it overly complicated. Problems marked in black are considered easy - if you are having trouble with a black problem and some of the blue problems, you are probably making them way too hard. Basic definitions! If you find yourself spending long hours without getting any benefit, come and see me and we’ll try to help. Very few students can get by without doing any work outside of class. The quizzes are more like the section and Additional Problems. You can’t do the latter until you understand the former.

Time Management (Exams)

Staring at an exam page is not the time to learn how to do Physics. Good exam time management starts with being familiar with the homework problems, the basic concepts and the formulas on your formula card. Beyond that, you should remember that most parts of the test are equally important, so don’t spend all your time on one problem or part. Go onto another problem that you can do. Don’t worry about what other students are doing. The student who gets up and hands their paper in halfway through the hour has used up as much time as they care to (for good or bad); it should have no bearing on your test. Do look through the whole test when you get it, making sure that yours is complete. Do keep units with your numbers and check to make sure that (a) the numbers and (b) the units of your answers makes sense. Don’t leave any parts blank if you can help it. Remember the Star Points!

Time Management (Dr. Phil Exams)

A typical Dr. Phil Exam is 4 or 5 pages long, each page is a single long involved problem with usually five parts. Although the whole problem may be more complicated than you typically find in the homework, I generally try to lead you through the problem if you read it through carefully. Look at it this way: this would be one of those “choose four of the following five problems” tests, except you are allowed to work on all the problems. An excellent paper may only score 80% raw. Above all else, remember that you can ask questions during a test. Don’t sit there and write “I am lost on this problem”, “I am missing the formula here” or “I could do parts (b)-(e), if I knew how to get the answer to part (a).” Instead, if you’re stuck on (a), ask Dr. Phil for a number to “use” as an answer to part (a) and go on. You can state a reasonable assumption of your own, and continue. “Just put it in writing.” Dr. Phil is not a mind reader.

Still Having Problems?

Killer Equations

There is no one equation to “Life, The Universe and Everything”. Every equation developed has some built-in limitations and some very real restrictions on when you can and can not use them. There are plenty of examples done in class and in the text which result in equations to solve a particular case. Students are inevitably tempted to use such “killer equations” for any problem that involves those quantities, because they think that the work has been done for them. The range equation is a classic example in ballistics, but this equation cannot be used unless the launch points and landing points are at the same height. Despite that warning, freely given in class, the range equation will be used to find out how far away a arrow will land, even if the archer is standing on a hilltop. In most cases, you are better off using the more basic, more general, more useful equations than searching for that “killer equation” that will solve the problem with one plug-in. Somehow the latter hardly seems like the kind of examination that would prove that you had learned anything.

Inappropriate Formulas (IAF!!!)

Even worse than trying to use Killer Equations, which at least have a passing connection to the subject at hand, is the use of just any old formula that happens to have the “right” letter variable in it! I am getting sufficiently tired of seeing Inappropriate Formulas on exams (one should really have a better laid out formula card and take more care in selecting equations), that you may not get any partial credit for the use of “IAF” in a problem.

Show ALL Work Means Having Some Work to Show

Something is not an equation if the two sides of the “=” aren’t the same thing with the same units. An integral isn’t an integral unless it has a differential, a derivative isn’t a derivative unless there is something to ... perfect experimental results; but careful and repeatable experiments will go a long way to helping you “see” the Physics.

Remember the Star Points!

In many cases, the answer is the least significant part of the problem. How you got there is the point. A properly done worked out physics problem represents a technical conversation between the writer and the reader. You wouldn’t understand Moby Dick either if all you read is the

Graphing Calculators

Just in the years that I have been in school, I have seen the rise of the calculator, the disappearance of the slide rule, and a definite drop in the ability to do simple error-free mathematics. When I was in college, there were stories about MIT and Harvard being concerned over students “cheating” with programmable calculators. As a proctor TA, I found students who used the old TI-30-IF only white face to pencil in all their formulas between the keys. Such cheating is not necessary, because I allow you a formula card up front. Today, the Texas Instruments TI-80 series graphing calculators are virtually standard issue in many college math and physics departments. Top flight calculators not only contain Physics, Math and Engineering equations built-in and powerful symbolic math programs that will handle fractions, algebraic and calculus equations, and accept additional sets of science and engineering formulas. It is even possible to transfer data and equations between calculators via cables or infrared (IR) transmitters/receivers.

Buy a Cheaper Calculator!!
My view of the situation is this: Very few students who buy a fancy calculator in order to substitute its
difficulties for their own. Frankly, from what I’ve seen, most of the built-in solutions are
either too general, too specific or just too inconvenient to be useful, and students find that either
they use that big brick like a regular calculator, or they write their own functions, just as you would write
out your own formula card. You have to show the work and steps anyway. Why not just learn the
Physics?

Ixnay on the TI-92 – It’s Not a Calculator (And the TI-89 is gone, too, as well as their successors.)
The TI-92 machine has been around for a while – it’s easy to spot because it has a QWERTY keyboard. Some
have found them to be a klutzy difficult calculator, but as the largest “calculator” on the market, they have real geek
appeal. While I can appreciate that having something big and powerful is cool, the fact is that the TI-92 became a
real pain in Fall 2000. Several students were using its symbolic math routines and it became painfully obvious that
they could barely do the calculus on their own. Worse, because they don’t know what they are doing, they don’t get
it right using their fancy machine anyway. So I am tired of messing with these things – the TI-92 family and any
other so-called calculator with a QWERTY keyboard are OUT. The TI-89, I believe, is the same as the TI-92
without the keyboard. It’s OUT too. Not allowed. End of story. If your ordinary looking graphical calculator
does symbolic math, better talk to Dr. Phil. This may include the HP-48 and others – see the next section to learn
about more problems.

Algebra and Calculus versus The Solver
Solvers and graphical solutions to problems offer interesting checks to your work, but since one of the grading
requirements is that you “show your work” on the paper, unless you intend to staple your calculator to each
problem, you simply can’t get any credit for simply using your Solver function. It is the same thing as “doing the
work in my head” – unless you intend to staple your head to the paper, you won’t get credit for the work. You
should also know that these alternate calculator methods do not always work properly. Dr. Phil’s suggestion is
simple: Learn to do the math with pencil and paper.

MTBF (Mean Time Between Failures)
No, this isn’t some sick statistic on awarding F’s to students. MTBF is actually a term to describe how often
computer equipment breaks down. I have seen many three and four year old calculators get chewed up in PHYS-2050 and learning to use a new calculator in the middle of a course can be traumatic. In the mid-’90’s many of us carried two calculators to exams, just in case one of them tubed out on us. Today’s calculators are a lot more
reliable than in those “old” days, but there are still plenty of “biodegradable” units that were never built to survive
more than a year or two. While I can appreciate that no one wants to spend more money, we do depend a lot on our
calculators in a course like this, and having a calculator that has keys that don’t work right is just begging for
trouble. Do yourself a favor: if you need a new calculator, buy it now, before a change becomes unsettling. At
the very least, many older calculators need new batteries right about now. You’ll thank me later. Dr. Phil just changed
the AAA’s again in his 1995 HP-48GX in 2005 and the low battery indicator is on – one set of batteries seems to
last me 2 to 2½ years... not forever.

“I Understand the Physics, I Just Can’t Do The Problems”
This is a refrain that is heard all the time. Yet the truth is that if you can’t do the problems, then you
probably don’t really understand the physics. Physics isn’t just equations, however, it is what you do
with them. Often, people who have trouble with doing the problems, also don’t have a clue as to what the
correct answer should look like. If you really understood the physics...

Practice, Practice, Practice
Very few people are so talented that they can leap into any new endeavor and have permanent success without
every practicing. Beginner’s luck usually doesn’t last very long. So you’re in a Physics class... what do you do?
Well, besides coming to class, reviewing you notes, opening your textbook occasionally, the best advice is to do
some Physics problems. Start with the assigned (i.e. recommended) problems. If you have problems, don’t just race
to the answers in the back of the book, or look for posted solutions, try looking at the worked out examples in the
text or from the class and reproduce that work.

PTFBIP (Put The Physics Back Into the Problem)
PHYS-2050 (H18) (Kaldon) Spring 2008 Page 13

Study Groups:
You may find that studying by yourself can be difficult. As is stated elsewhere, we are trying to change the way that you think – sometimes this means you need a different perspective. This is where working with someone may prove useful. Study groups of 2 to 4 students meeting a couple of times a week seem to be effective. As many questions as you have, it is almost always the case that you can help someone else.

Office Hours:
It will take a few days to shake down everyone’s schedule and get into a rhythm. Frankly, I don’t get enough business during office hours, but boy do I hear the kvetching about how hard Physics is and how awful the Quizzes are. If my office hours are not convenient to your schedule, then it is up to you to make an appointment or swing by the office and see if I’m in. Or call. You’ve got the number.

Physics is Phun:
No one ever believes that on the first day. And for some, it never is fun. But we can try! Really!

Credentials: Dr. Philip Edward Kaldon - Born western upstate New York; Junior High near New York City; High School in Greensboro, North Carolina (1976). B.A. Integrated Sciences, Northwestern University (1980); M.S. Physics, Michigan Technological University (1986/88); Ph.D. in Applied Physics, Michigan Technological University (1989). Physics Teaching: WMU (1992-), KVCC, GVSU, Hope College. Former President—Michigan Section of the American Association of Physics Teachers (MIAAPT). Dr. Phil pursues many science and science literacy efforts, and on the first day of class, he is on Day 3664 of writing a massive science fiction romantic epic novel. A fourth readable draft of a complete novel, The Devil’s Coffin, set in the same sci-fi universe, is on Day 2481. No – it’s not ready for you guys to read yet. After sending out fifty short stories one-hundred-and-seventy-eight times, Dr. Phil has three stories published in anthologies, one online at http://www.spectravaganza.com/2-wim-06.html and six more slated for publishing in 2008. “Hoxes”, Dr. Phil’s SF story of the accidental creation of a black hole if you made him clean his office, was published in September 2006. No – Dr. Phil has no intentions of making you read his fiction. But he did attend the prestigious 2004 Clarion Science Fiction and Fantasy Writers Workshop, an intensive six-week boot camp for SF writing, so he is well on his way to becoming a real science fiction author!

Why We Do All This:
service learning – an exposure to science in a historical context that serves to allow a person to observe the world around them with understanding, deal with technological applications at home and work, appreciate the distinction between fact and speculation in the media and politics, have a working knowledge of numbers and the scale of the universe, and be able to pursue more information if desired, as a function of everyday life.

Philip Edward Kaldon, Fall 1995

The Disclaimer
This Syllabus has been revamped, rewritten, re-spellchecked, re-edited, re-etc., more times than I can count for different Physics courses. Occasionally old, out of date material remains from Hope College or GVSU or WMU or KVCC, for which I apologize. If there are real errors, you will be notified!

We Are Here To Change The Way You Think - There Are No Stupid Questions
(Just Ones That Half The Class Wanted Asked Anyway) -
UNITIS Will Save Your Life -
PTBPB! (Put The Physics Back Into the Problem!) -
Physics is Phun (This is the Fun part. Are we having Fun yet?)

PHYS-2050 (H18) (Kaldon) Spring 2008 Page 14

PHYS-2050 Honors (H18) (Kaldon) < MTuWThF 11:00-11:50am 1110 Rood > Rev. 1/8/2008
Chapter assignments are approximate – actual chapters will depend on our actual pace.

<table>
<thead>
<tr>
<th>Week</th>
<th>Class Dates</th>
<th>Topic (Serway – 7th ed. – WMU)</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7,8,9 January</td>
<td>Introduction</td>
<td>Topic 1 Assigned</td>
</tr>
<tr>
<td>2.</td>
<td>10,11 January</td>
<td>Ch. 1 - Physics and Measurement</td>
<td>Quiz 1 (1/11)</td>
</tr>
<tr>
<td>3.</td>
<td>14,15,16 January</td>
<td>Ch. 2 - Motion in One Dimension</td>
<td>Quiz 2 (1/15), 3 (1/17)</td>
</tr>
<tr>
<td>4.</td>
<td>17,18 January</td>
<td>Ch. 3 - Vectors</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>21 January</td>
<td>MLK Day Convocation and Activities</td>
<td>Quiz 4 (1/22), 5 (1/24)</td>
</tr>
<tr>
<td>6.</td>
<td>22 January</td>
<td>Ch. 4 - Motion in Two Dimensions</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>23,24,25 January</td>
<td>Ch. 5 - The Laws of Motion</td>
<td>Quiz 6 (1/28)</td>
</tr>
<tr>
<td>8.</td>
<td>26 January</td>
<td>Ch. 6 - Circular Motion</td>
<td>Quiz 7 (2/5)</td>
</tr>
<tr>
<td>9.</td>
<td>27 January</td>
<td>Ch. 7 - Energy and Energy Transfer</td>
<td>Quiz 8 (2/7)</td>
</tr>
<tr>
<td>10.</td>
<td>28 January</td>
<td>Ch. 8 - Potential Energy</td>
<td>Quiz 9 (2/12), 10 (2/14)</td>
</tr>
<tr>
<td>11.</td>
<td>29 January</td>
<td>Ch. 9 - Linear Momentum and Collisions</td>
<td>Quiz 11 (2/19), 12 (2/21)</td>
</tr>
<tr>
<td>12.</td>
<td>30 January</td>
<td>Ch. 10 - Rotations … About Fixed Axis</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>31 January</td>
<td>Ch. 11 - Angular Momentum</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>1 February</td>
<td>Ch. 12 - Static Equilibrium & Elasticity</td>
<td>Quiz 13 (2/26)</td>
</tr>
<tr>
<td>15.</td>
<td>2 February</td>
<td>Ch. 13 - Universal Gravitation</td>
<td>Exam 2 (Ch. 5-10) – 2/28 Thu.</td>
</tr>
<tr>
<td>16.</td>
<td>3-7 March</td>
<td>Spring Break <No Classes All Week></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>10,11,12 March</td>
<td>Ch. 13 - Universal Gravitation</td>
<td>Quiz 14 (3/11), 15 (3/13)</td>
</tr>
<tr>
<td>18.</td>
<td>13,14,15 March</td>
<td>2008 March Meeting of the American</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Society, New Orleans LA</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>14,15,16 April</td>
<td>Ch. 14 - Fluid Mechanics</td>
<td>Quiz 16 (3/18), 17 (3/20)</td>
</tr>
<tr>
<td>20.</td>
<td>17,18,19 March</td>
<td>Ch. 15 - Oscillatory Motion</td>
<td>Quiz 18 (3/25), 19 (3/27)</td>
</tr>
<tr>
<td>21.</td>
<td>20,21,22 March</td>
<td>Ch. 16 - Wave Motion</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>24,25,26 March</td>
<td>Ch. 17 - Sound Waves</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>27,28 March</td>
<td>Ch. 18 - Superposition & Standing</td>
<td>Quiz 20 (4/3)</td>
</tr>
<tr>
<td>24.</td>
<td>29 March</td>
<td>Waves</td>
<td>Exam 3 (Ch. 11-15) – 4/3 Thu.</td>
</tr>
<tr>
<td>25.</td>
<td>1,2 April</td>
<td>Ch. 19 - Temperature</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>3, 4 April</td>
<td>Ch. 20 - Heat & 1st Law of Thermo.</td>
<td>Quiz 22 (4/8), 24 (4/10)</td>
</tr>
<tr>
<td>27.</td>
<td>7,8,9 April</td>
<td>Ch. 21 - Kinetic Theory of Gasses</td>
<td>Quiz 101 - 4/10 @ 5pm</td>
</tr>
<tr>
<td>28.</td>
<td>10,11 April</td>
<td>Ch. 22 - Heat Engines & 2nd Law Thermo</td>
<td>Quiz 23 (4/15)</td>
</tr>
<tr>
<td>29.</td>
<td>14,15,16 April</td>
<td>PHYS-2050 Course Review (1-2 days)</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>17,18 April</td>
<td>Final Exam - 4/24 Thu.</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>21-25 April</td>
<td>Grades Due on Tuesday at Noon</td>
<td></td>
</tr>
</tbody>
</table>