1. Use the Table of Integrals on the Reference Pages to evaluate the integral
\[\int \sqrt{x^2 + x + 1} \, dx. \]

2. Use the Trapezoid Rule with \(n = 10 \) to evaluate the integral \(\int_0^\pi \sin x \, dx \). Round-off the result to 6 decimal places.

3. How large should \(n \) be so that the approximation of \(\int_0^\pi \cos(2x) \, dx \) using the Simpson’s Rule is accurate to within 0.00001?

4. Use Euler’s method with step size 0.1 to approximate \(y(2.4) \) where \(y \) is the solution of the initial value problem \(y' = x^2 - xy, \; y(1) = 0 \).

5. A function \(y(t) \) is a solution of a differential equation \(\frac{dy}{dt} = y^4 - 6y^3 + 5y^2 \). What are the equilibrium solutions? For what values of \(y \) is \(y \) concave up?

6. Solve the initial value problem \(\frac{dy}{dx} = \frac{1 + y^2}{y \cos x} \), \(y(0) = 1 \).

7. A bacteria culture starts with 500 bacteria and grows at a rate proportional to its size. After 3 hours there are 8000 bacteria. Find the number of bacteria after 4 hours.

8. One model for the spread of the rumor is that the rate of spread is proportional to the product of the fraction \(y \) of the population who have heard the rumor and the fraction who have not heard the rumor. Write the differential equation that is satisfied by \(y \). Solve the equation.

9. Find the limit of the sequence \(a_n = \frac{n \cos n}{n^2 + 1} \).

10. Determine whether the sequence \(a_n = \frac{4n - 3}{3n + 4} \) is increasing, decreasing, or not monotonic. Is it bounded?
Solutions

1. \(x^2 + x + 1 = (x + 1/2)^2 + 3/4 \). Substitution \(u = x + 1/2 \). Use Formula 21, with \(a = \sqrt{3}/2 \).
 Solution: \(\frac{x + 1/2}{2} \sqrt{x^2 + x + 1} + \frac{3}{4} \ln(x + 1/2 + \sqrt{x^2 + x + 1}) + C. \)

2. \(\Delta x = \frac{\pi}{10}; T_{10} = \frac{\pi}{20} \left[\sin 0 + 2 \sin \frac{\pi}{10} + 2 \sin \frac{2\pi}{10} + \cdots + 2 \sin \frac{9\pi}{10} + \sin \pi \right] \approx 1.983523538. \) Answer: 1.983524.

3. \(f(x) = \cos 2x; f^{(4)}(x) = 16 \cos 2x; |16 \cos 2x| \leq 16. \) Need \(\frac{16(\pi - 0)}{180n^4} < 10^{-5}, \) hence \(n > \sqrt[4]{\frac{16\pi}{180}} \approx 12.92704729. \) Result: \(n = 13. \)

4. Use \(n_{Min} = 0, u(n) = u(n - 1) + 0.1, u(n_{Min}) = \{1\}, v(n) = v(n - 1) + 0.1(u(n - 1)^2 - u(n - 1)v(n - 1)), v(n_{Min}) = \{0\}. \) Result: 1.8647.

5. Constant solutions: \(dy/dt = 0. \) Result: \(y = 0, y = 1, y = 5. \) Concave up: \(d^2y/dt^2 > 0. \) Result: \(0 < y < (9 - \sqrt{41})/4 \) and \(y > (9 + \sqrt{41})/4. \)

6. \(\frac{ydy}{1 + y^2} = \sec x \, dx. \) Formula 14: \(\frac{1}{2} \ln(1 + y^2) = \ln |\sec x + \tan x| + C. \) General solution: \(y = \pm \sqrt{e^C(\sec x + \tan x)^2 - 1}. \) Use \(x = 0, y = 1. \) Answer: \(y = \sqrt{2(\sec x + \tan x)^2 - 1}. \)

7. \(P(0) = 500, dP/dt = kP. \) Then \(P(t) = 500e^{kt}. \) Use \(t = 3, P = 8000 \) to obtain \(k = \ln(16/3). \) Then \(P(4) = 500e^{4\ln(16/3)} \approx 404543.2099. \) Answer: 404543.

8. Denote by \(T \) the total population. Then \(dy/dt = ay(T - y) \) for some \(a > 0. \) The equation \(dy/dt = (aT)y(1 - y/T) \) is logistic equation. Solution: \(y = T/(1 + Ae^{-aTt}) \) where \(A = (T - y(0))/y(0). \)

9. \(0 \leq |n \cos n/(n^2 + 1)| \leq n/(n^2 + 1) \) and \(\lim_{n \to \infty} n/(n^2 + 1) = 0. \) By Sandwich Theorem \(\lim_{n \to \infty} n \cos n/(n^2 + 1) = 0. \)

10. \(f(x) = (4x - 3)/(3x + 4), f'(x) = 25/(3x + 4)^2 > 0 \) so \(f \) is increasing, and \(a_n \) is increasing. \(4n - 3 < 4, 3n + 4 > 3n \) so \(1/(3n + 4) < 1/(3n). \) Thus \(a_n < 4n/(3n) = 4/3 \) and \(a_n \) is bounded above by \(4/3. \) Both \(4n - 3 > 0 \) and \(3n + 4 > 0 \) so \(a_n \) is bounded below by \(0. \)