ECE 4200/5200 POWER ELECTRONICS TEST II TIPS

There will be 3 questions and you are to answer all. Please, use green/blue books.

Once more, the emphasis is on waveform sketches.

Areas to be covered:

1. DC-AC Inverters
 (a) Single-phase Half-wave
 (b) Single-phase Full-Wave
 (c) Three-phase Full-Wave

2. Single-Phase and Three-Phase Controlled AC-DC Rectifiers With
 (a) R Load
 (b) R - L Load
 (c) R – L – E Load

3. Single-Phase AC-AC Voltage Controllers
 (a) R Load
 (b) R-L Load

4. Three-Phase AC-AC Voltage Controllers
 (a) R Load
 (b) R - L Load

EXAMPLES

1. A single-phase ac voltage full-wave controller with RL load is connected to a 120-V source at 60 Hz with \(R = 18 \, \Omega \) and \(L = 30 \, \text{mH} \), and \(\alpha = 80^\circ \). The extinction angle \(\beta = 211^\circ \).
 (a) Determine the expression for the output current \(i_L(wt) \).
 (b) Estimate the RMS value of the steady-state output current after a long time.
 (c) Sketch the output load voltage and SCR voltage waveforms. Show also the pattern of SCR conduction on your sketches.
2. A six-pulse controlled bridge rectifier shown in Fig. P2.1 is connected to a three-phase 480-V rms line-to-line 60 Hz AC supply. The load resistance \(R = 50 \, \Omega \) and the load inductance \(L = 50 \text{-mH} \). The delay angle is 75°.
 (a) Find the RMS of output current.
 (b) Find the RMS SCR current.
 (c) Sketch the waveforms for output voltage \(v_o(t) \) and line current \(i_c(t) \). Show the maximum and minimum values of \(v_o(t) \) and \(i_c(t) \) on the sketches. Show also the pattern of SCR conduction on your sketches.

3. Consider the single-phase controlled rectifier of Fig. P3.1, assuming negligible ripple in the dc current \(i_o \), \(v_S = 220(\sqrt{2})\sin(\omega t) \), \(R = 20\Omega \), and \(\alpha = 45^\circ \).
 (a) Carefully sketch the steady state waveforms \(v_o, i_{ac}, v_{T1} \), and \(i_{T1} \).
 (b) Determine the average value of the dc current \(I_{dc} \).
 (c) Determine the power factor at the ac source.

4. Problem #6.1 pp. 356
6. Problem #6.5 pp. 357
8. Problem #10.13 pp. 548
10. Problem #10.27 pp. 550
12. Problem #11.3 pp. 599

12. Problem #11.10 pp. 600