Quasi-cyclic codes

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Algebra for Secure and Reliable Communications Modeling
Morelia, Michoacán, Mexico
October 12, 2012
Introduction

- This will be an elementary introduction to cyclic and quasi-cyclic codes from the point of view of ring theory.
- At least I hope so!
Cyclic codes

- Let A be an alphabet.
- The shift operator on A^n is the map $T : A^n \rightarrow A^n$ given by

\[(a_0, a_1, \ldots, a_{n-2}, a_{n-1}) \mapsto (a_{n-1}, a_0, a_1, \ldots, a_{n-2}).\]

- A linear code $C \subset A^n$ is a cyclic code if $T(C) \subset C$. That is, the shift of any codeword is again a codeword.
Examples

- \(A = \mathbb{F}_2, \ n = 7 \)
- Let \(C \) be the code spanned by the row vectors:

 \[
 \begin{align*}
 1011100 \\
 0101110 \\
 0010111
 \end{align*}
 \]

- \(T \) of row 1 is row 2; \(T \) of row 2 is row 3. \(T \) of row 3 is the sum of rows 1 and 3. Use linearity in general.
Viewing codewords as polynomials

- Suppose the alphabet is a finite commutative ring R.
- View a codeword as a polynomial:

\[(a_0, a_1, \ldots, a_{n-2}, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}\]
In the 1950s, Prange observed: if we consider the polynomials modulo $x^n - 1$, then the shift operator corresponds to multiplication by x.

$$x(a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1})$$

$$= a_0x + a_1x^2 + \cdots + a_{n-2}x^{n-1} + a_{n-1}x^n$$

$$\equiv a_{n-1} + a_0x + a_1x^2 + \cdots + a_{n-2}x^{n-1} \mod (x^n - 1)$$

\[
\uparrow \\
(a_{n-1}, a_0, a_1, \ldots, a_{n-2})
\]
Cyclic codes as ideals

- This establishes an isomorphism

\[R^n \cong R[x]/(x^n - 1) \]

as (free) \(R \)-modules such that the shift operator \(T \) corresponds to multiplication by \(x \) in the ring structure of \(R[x]/(x^n - 1) \).

- Linear cyclic codes in \(R^n \) correspond to ideals in \(R[x]/(x^n - 1) \).
Structure of $R[x]/(x^n - 1)$

- For R a finite commutative ring, about all we can say about $R[x]/(x^n - 1)$ is that it too is a finite commutative ring, of order $|R|^n$.
- Every finite commutative ring splits (as rings) as the direct sum of local rings.
- If $R[x]/(x^n - 1) \cong \bigoplus R_i$, with R_i local, then the ideals of $R[x]/(x^n - 1)$ are direct sums of ideals of the R_i.
- Structure of ideals of local rings is worth studying in general. We look at a special example.
Finite fields

- Let $R = \mathbb{F}_q$, a finite field.
- $\mathbb{F}_q[x]$ is a principal ideal ring.
- The ideals of $\mathbb{F}_q[x]/(x^n - 1)$ correspond to the ideals of $\mathbb{F}_q[x]$ that contain the ideal $(x^n - 1)$.
- An ideal $(g) \subset \mathbb{F}_q[x]$ contains $(x^n - 1)$ iff the polynomial g divides $x^n - 1$.
Factoring $x^n - 1$

- In the principal ideal ring $\mathbb{F}_q[x]$ there is unique factorization into irreducibles.
- Factor

$$x^n - 1 = f_1^{s_1} f_2^{s_2} \cdots f_k^{s_k},$$

where the f_i are distinct monic irreducible polynomials. The s_i are positive integers.
Chinese remainder theorem

- There is a natural ring homomorphism
 \[
 \frac{\mathbb{F}_q[x]}{(x^n - 1)} \rightarrow \bigoplus_{i=1}^{k} \frac{\mathbb{F}_q[x]}{(f_i^{s_i})},
 \]
given by reduction mod \(f_i^{s_i} \).

- The Chinese remainder theorem (CRT) says that this homomorphism is an isomorphism. (Exercise.)

- Ideals on the left (cyclic codes) are sums of ideals from the right.
Examples

Let \(q = 2 \), so that \(- = +\).

\[
\begin{align*}
 x^2 - 1 &= (x + 1)^2 \\
 x^3 - 1 &= (x + 1)(x^2 + x + 1) \\
 x^4 - 1 &= (x + 1)^4 \\
 x^5 - 1 &= (x + 1)(x^4 + x^3 + x^2 + x + 1) \\
 x^6 - 1 &= (x + 1)^2(x^2 + x + 1)^2 \\
 x^7 - 1 &= (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1) \\
 x^8 - 1 &= (x + 1)^8
\end{align*}
\]
When does $x^n - 1$ factor over \mathbb{F}_q into distinct irreducibles, all of multiplicity one?

This happens when n, q are relatively prime.

q is a unit in $\mathbb{Z}/n\mathbb{Z}$, so $q^\ell \equiv 1 \mod n$ for some smallest positive integer ℓ. Then $n|(q^\ell - 1)$.

There is a cyclic n-subgroup in the multiplicative group of \mathbb{F}_{q^ℓ}, so $x^n - 1$ splits into distinct linear factors over \mathbb{F}_{q^ℓ}.

Multiply factors in Frobenius orbits to get distinct factors over \mathbb{F}_q. (Cyclotomic cosets.)
Relatively prime case (a)

- When $\gcd(q, n) = 1$, $x^n - 1$ factors as $x^n - 1 = f_1 f_2 \cdots f_k$, distinct irreducibles.

- Chinese remainder theorem gives

$$\frac{\mathbb{F}_q[x]}{(x^n - 1)} \rightarrow \bigoplus_{i=1}^{k} \frac{\mathbb{F}_q[x]}{(f_i)}.$$

- The rings on the right are all field extensions of \mathbb{F}_q, because the f_i are irreducible.
Relatively prime case (b)

- The only ideals in a field are 0 and the field itself.
- Ideals on the left (cyclic codes) are generated by g of the form
 \[g = f_1^{\delta_1} f_2^{\delta_2} \cdots f_k^{\delta_k}, \]
 where each $\delta_i = 0$ or 1.
- There are 2^k such cyclic codes.
- Write then down for $q = 2$, $n = 7$ ($k = 3$).
General case for fields

The Chinese remainder theorem gives

$$\mathbb{F}_q[x] / (x^n - 1) \rightarrow \bigoplus_{i=1}^k \mathbb{F}_q[x] / (f_i^{s_i}).$$

The rings $\mathbb{F}_q[x] / (f_i^{s_i})$ are chain rings, because the ideals of $\mathbb{F}_q[x] / (f_i^{s_i})$ correspond to ideals of $\mathbb{F}_q[x]$ that contain $(f_i^{s_i})$. That is, to (g) where $g | f_i^{s_i}$. Since f_i is irreducible, $g = f_i^{j_i}$ for $j_i \leq s_i$.

There are $\prod_{i=1}^k (s_i + 1)$ such cyclic codes.
Examples $q = 2$, $n = 4$

Over \mathbb{F}_2, $x^4 - 1 = (x + 1)^4$. For $g = (x + 1)^j$, here are the first rows of the cyclic codes.

<table>
<thead>
<tr>
<th>j</th>
<th>$(x + 1)^j$</th>
<th>first row</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>$1 + x$</td>
<td>1100</td>
</tr>
<tr>
<td>2</td>
<td>$1 + x^2$</td>
<td>1010</td>
</tr>
<tr>
<td>3</td>
<td>$1 + x + x^2 + x^3$</td>
<td>1111</td>
</tr>
<tr>
<td>4</td>
<td>$1 + x^4 \equiv 0$</td>
<td>0000</td>
</tr>
</tbody>
</table>
Examples $q = 2$, $n = 6$

- Over \mathbb{F}_2, $x^6 - 1 = (x + 1)^2(x^2 + x + 1)^2$. There are now $3^2 = 9$ cyclic codes. First rows:

<table>
<thead>
<tr>
<th>jk</th>
<th>first row</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>100000</td>
</tr>
<tr>
<td>10</td>
<td>110000</td>
</tr>
<tr>
<td>20</td>
<td>101000</td>
</tr>
<tr>
<td>01</td>
<td>111000</td>
</tr>
<tr>
<td>11</td>
<td>100100</td>
</tr>
<tr>
<td>21</td>
<td>110110</td>
</tr>
<tr>
<td>02</td>
<td>101010</td>
</tr>
<tr>
<td>12</td>
<td>111111</td>
</tr>
<tr>
<td>22</td>
<td>000000</td>
</tr>
</tbody>
</table>
Quasi-cyclic codes

- Work over \mathbb{F}_q, and suppose $n = \ell m$.
- A linear code $C \subset \mathbb{F}_q^n = \mathbb{F}_q^{\ell m}$ is quasi-cyclic of index ℓ or \(\ell\)-quasi-cyclic if $T^\ell(C) \subset C$.
- Example: $q = 2$, $\ell = 2$, $m = 4$, $n = 8$. All the codewords (left column is a quasi-cyclic subcode):

00000000	01010101
10001000	11011101
00100010	01110111
10101010	11111111
Quasi-cyclic codes as codes over a ring

- Set \(R = \mathbb{F}_q[x] / (x^m - 1) \). Label a vector in \(\mathbb{F}_q^\ell m \) by

\[
a = (a_{00}, a_{01}, \ldots, a_{0,\ell-1},
 a_{10}, a_{11}, \ldots, a_{1,\ell-1}, \ldots,
 a_{m-1,0}, a_{m-1,1}, \ldots, a_{m-1,\ell-1})
\]

- Set \(A_j = \sum_{i=0}^{m-1} a_{ij} x^i \in \mathbb{F}_q[x] \).
- Map \(\mathbb{F}_q^\ell m \rightarrow R^\ell \) by \(a \mapsto (A_0, A_1, \ldots, A_{\ell-1}) \).
- Then \(\ell \)-quasi-cyclic codes correspond to \(R \)-linear codes in \(R^\ell \).
Work of Ling and Solé

- As for cyclic codes, the ring R can be decomposed via the Chinese remainder theorem.
- This allows R-linear codes in R^ℓ to be decomposed into codes over local rings (fields and chain rings, here).
- Ling and Solé, in a series of papers, 2001–2006, describe the structure of quasi-cyclic codes with coefficients in \mathbb{F}_q or in chain rings. They describe the dual codes and characterize self-dual codes.
Another direction

- The ring $R = \mathbb{F}_q[x]/(x^m - 1)$ is isomorphic to $\mathbb{F}_q[C_m]$, the group algebra of the cyclic m-group with coefficients in \mathbb{F}_q.
- Write C_m multiplicatively, as $C_m = \{e, g, g^2, g^3, \ldots, g^{m-1}\}$, with $g^m = e$.
- An element $a \in \mathbb{F}_q[C_m]$ has the form $a = \sum_{i=0}^{m-1} a_i g^i$, with $a_i \in \mathbb{F}_q$.
- $\mathbb{F}_q[C_m] \cong \mathbb{F}_q[x]/(x^m - 1)$ by sending g to x.
$\mathbb{F}_2 + u\mathbb{F}_2$

- Multiply in the ring $\mathbb{F}_2 + u\mathbb{F}_2$, with $u^2 = 0$, by

\[(a_0 + a_1 u)(b_0 + b_1 u) = a_0 b_0 + (a_0 b_1 + a_1 b_0)u.\]

- Set $v = 1 + u$. Notice that $v^2 = 1 + u^2 = 1$.

- Use $1, v$ as basis instead. Then

\[(c_0 + c_1 v)(d_0 + d_1 v) = c_0 d_0 + (c_0 d_1 + c_1 d_0)v + c_1 d_1 v^2 = (c_0 d_0 + c_1 d_1) + (c_0 d_1 + c_1 d_0)v.\]
\[\mathbb{F}_2 + u \mathbb{F}_2 \cong \mathbb{F}_2[C_2] \]

- Compare this with the multiplication in the group algebra \(\mathbb{F}_2[C_2] \):

\[
(c_0e + c_1g)(d_0e + d_0g) = c_0d_0e + (c_0d_1 + c_1d_0)g + c_1d_1g^2
= (c_0d_0 + c_1d_1)e + (c_0d_1 + c_1d_0)g
\]

- We see that \(\mathbb{F}_2 + u \mathbb{F}_2 \cong \mathbb{F}_2[C_2] \). The same proof works for \(q = 2^t \). (Not true for odd \(q \).)
Maschke’s theorem (a)

- The fact that $\mathbb{F}_q[x]/(x^n - 1)$ splits into a sum of fields when $\gcd(q, n) = 1$ is a special case of Maschke’s theorem in group representation theory.
- Suppose k is a field of characteristic p and G is a finite group. If p does not divide the order of G (always true for characteristic zero), then the group algebra $k[G]$ is a semisimple ring (a sum of matrix rings over division algebras over k).
Maschke’s theorem (b)

- For $G = C_n$, the group is abelian. Then $\mathbb{F}_q[x]/(x^n - 1) \cong \mathbb{F}_q[C_n]$ is a commutative ring. If $\gcd(q, n) = 1$, then Maschke’s theorem applies, and $\mathbb{F}_q[x]/(x^n - 1)$ splits as a sum of matrix rings.

- In order to be commutative and finite, the matrix rings must be 1×1, hence just fields (extensions of \mathbb{F}_q).
Codes over group algebras

- This leads one to contemplate codes over group algebras.
- Compare to “group codes” in the literature.
- Even more generally: codes over algebras. By fixing a vector space basis for an algebra R over \mathbb{F}_q, one can view R-linear codes $C \subset R^n$ as \mathbb{F}_q-codes of length $n \cdot \dim_{\mathbb{F}_q} R$, with additional symmetry coming from the R-module structure.
- This area should be wide open for investigation.