Equivalence of codes: necessary conditions

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

Algebra for Secure and Reliable Communications
Modeling
Morelia, Michoacán, Mexico
October 13, 2012
In this lecture we show that if the extension property is satisfied for linear codes over a finite ring R with respect to the Hamming weight, then the ring is Frobenius.

We will follow a strategy due to Dinh and López-Permouth, 2004.

We will use the re-formulation of the extension property as the injectivity of the weight mapping $W : F(\mathcal{O}^\#, \mathbb{N}) \rightarrow F(M, \mathbb{C})$:

$$\eta \mapsto (m \mapsto \sum_{[\lambda] \in \mathcal{O}^\#} w(m\lambda)\eta([\lambda])).$$
The strategy of Dinh and López-Permouth

Prove the contrapositive as follows.

1. If \(R \) is not Frobenius, then \(\text{Soc}(R) \) contains a matrix module of the form \(M_{n \times k}(\mathbb{F}_q) \), with \(n < k \).

2. Use \(A = M_{n \times k}(\mathbb{F}_q) \) as alphabet, and show that the extension property fails for this alphabet.

3. Show that the counterexamples for \(A \) are also counterexamples for \(R \).

Dinh and López-Permouth proved 1 and 3. They proved 2 is certain special cases.
Socle condition

- We saw in an earlier lecture that matrix rings $M_n(\mathbb{F}_q)$ admit a generating character $\rho = \theta_q \circ \text{Tr}$.
- By restriction, any left $M_n(\mathbb{F}_q)$-module of the form $M_{n \times k}(\mathbb{F}_q)$ with $n \geq k$ admits a generating character. Include $M_{n \times k}(\mathbb{F}_q)$ inside $M_n(\mathbb{F}_q)$ as the first k columns, and restrict ρ to $M_{n \times k}(\mathbb{F}_q)$.
- Any ring R having $\text{Soc}(R) \cong \bigoplus M_{n_i \times k_i}(\mathbb{F}_{q_i})$ with all $n_i \geq k_i$ is Frobenius. Because $\text{Soc}(R)$ admits a generating character θ, θ extends to a generating character on R. Thus R is Frobenius.
The weight mapping again

- The weight mapping is $W : F(O^#, \mathbb{N}) \to F(M, \mathbb{C})$:

 \[\eta \mapsto (m \mapsto \sum_{[\lambda] \in O^#} w(m\lambda)\eta([\lambda])). \]

- If $u \in G_l$, then $W(\eta)(um) = W(\eta)(m)$, all $m \in M$.

- Thus the image of W lies inside $F(M, \mathbb{C})^{G_l}$, the vector space of G_l-invariant functions on M. This space can be identified with $F(O, \mathbb{C})$, the functions on the set O of all the G_l-scale classes of M.
And again

- Suppose \(w \) has values in \(\mathbb{Q} \), which happens for the Hamming, Lee, Euclidean, homogeneous weights.
- Then \(W : F(\mathcal{O}^\#, \mathbb{N}) \to F(\mathcal{O}, \mathbb{Q}) \).
- By tensoring with \(\mathbb{Q} \) (formally allowing \(\eta \) to take rational values), we get a linear transformation of \(\mathbb{Q} \)-vector spaces:

\[
W : F(\mathcal{O}^\#, \mathbb{Q}) \to F(\mathcal{O}, \mathbb{Q}).
\]

- The \(\mathbb{Q} \)-version of \(W \) is injective iff the \(\mathbb{N} \)-version is injective. Now we can use linear algebra over \(\mathbb{Q} \).
Alphabet $M_{n \times k}(\mathbb{F}_q)$, $n < k$

- Let $R = M_n(\mathbb{F}_q)$ and alphabet $A = M_{n \times k}(\mathbb{F}_q)$, a left R-module. We use the Hamming weight wt on A.
- For the Hamming weight, the symmetry groups are $G_l = \mathcal{U}(R) = GL_n(\mathbb{F}_q)$, the group of invertible matrices of size $n \times n$, and $G_r = \text{Aut}(A) = GL_k(\mathbb{F}_q)$ (under right matrix multiplication).
- We examine the weight mapping $W : F(\mathcal{O}^\#, \mathbb{Q}) \to F(\mathcal{O}, \mathbb{Q})$ in detail for a left R-module M.

Analysis of W mapping: \mathcal{O}

- Any left R-module has the form $M = M_{n \times t}(\mathbb{F}_q)$.
- \mathcal{O} is the set of $G_l = GL_n(\mathbb{F}_q)$ scale classes of M.
- Classes in \mathcal{O} are represented by row-reduced echelon matrices of size $n \times t$.

Analysis of W mapping: $\mathcal{O}^\#$

- $\text{Hom}_R(M, A) = M_{t \times k}(\mathbb{F}_q)$ (under right matrix multiplication).
- $\mathcal{O}^\#$ is the set of (right) $G_r = GL_k(\mathbb{F}_q)$ scale classes of $\text{Hom}_R(M, A)$.
- Classes in $\mathcal{O}^\#$ are represented by column-reduced echelon matrices of size $t \times k$.
Analysis of W mapping: dimensions

- For any finite set S, $\dim_{\mathbb{Q}} F(S, \mathbb{Q}) = |S|$.
- Then $\dim_{\mathbb{Q}} F(O^\#, \mathbb{Q}) = |O^\#|$, which equals the number of column-reduced echelon matrices of size $t \times k$.
- Similarly, $\dim_{\mathbb{Q}} F(O, \mathbb{Q}) = |O|$, which equals the number of row-reduced echelon matrices of size $n \times t$.
- Because $n < k$ (by hypothesis), $|O^\#| > |O|$.
- Thus, $\dim_{\mathbb{Q}} F(O^\#, \mathbb{Q}) > \dim_{\mathbb{Q}} F(O, \mathbb{Q})$, and W cannot be injective.
Suppose $R = M_n(\mathbb{F}_q)$ and $A = M_{n \times (n+1)}(\mathbb{F}_q)$.

Choose $M = A$. Then $\text{Hom}_R(M, A) = M_{n+1}(\mathbb{F}_q)$.

Define $\eta_+ : \mathcal{O}^\# \rightarrow \mathbb{N}$ by: any column-reduced echelon matrix of size $(n + 1) \times (n + 1)$ of EVEN rank r is assigned multiplicity $q^{(r)}_{(2)}$.

Define $\eta_- : \mathcal{O}^\# \rightarrow \mathbb{N}$ by: any column-reduced echelon matrix of size $(n + 1) \times (n + 1)$ of ODD rank r is assigned multiplicity $q^{(r+1)}_{(2)}$.

The codes determined by η_{\pm} are not equivalent (η_+ has a zero position corresponding to the zero matrix), but they have the same image under W.
Step three

- R non-Frobenius with $R/J \cong \bigoplus M_{n_i}(\mathbb{F}_{q_i})$.
- By step 1, there exists an index i so that $M_{n_i \times k_i}(\mathbb{F}_{q_i}) \subset \text{Soc}(R)$, with $n_i < k_i$.
- Apply Step 2, with $M_{n_i}(\mathbb{F}_{q_i})$ and $M_{n_i \times k_i}(\mathbb{F}_{q_i})$.
- The counterexamples from Step 2 are $M_{n_i}(\mathbb{F}_{q_i})$-linear codes inside
 $M_{n_i \times k_i}(\mathbb{F}_{q_i})^N \subset \text{Soc}(R)^N \subset R^N$. They are considered R-linear codes via $R \rightarrow R/J \rightarrow M_{n_i}(\mathbb{F}_{q_i})$.
- The zero position in η_+ shows that the codes from η_{\pm} are not equivalent over the original ring R.
Why do η_\pm give the same weights?

- One can calculate that $W(\eta_+) = W(\eta_-)$.
- This is a long, detailed argument involving the Cauchy binomial theorem.
- Equivalently, the argument involves properties of the Möbius function of the poset of all linear subspaces in \mathbb{F}_q^k.
- The multiplicities involved in η_\pm are values of the Möbius function.
Example (a)

- $R = \mathbb{F}_q$, $M = A = M_{1\times2}(\mathbb{F}_q) = \mathbb{F}_q^2$.
- **DANGER**: the Hamming weight on A means that $\text{wt}(ab) = 1$ unless $ab = 00$ ($ab \in \mathbb{F}_q^2$).
- $\text{Hom}_R(M, A) = M_2(\mathbb{F}_q)$, so look at 2×2 column-reduced echelon matrices.
- For η_+: zero matrix with multiplicity 1; the identity matrix with multiplicity q.
- For η_-: the following, each with multiplicity 1:
 \[
 \begin{pmatrix}
 1 & 0 \\
 c & 0
 \end{pmatrix}
 \quad (c \in \mathbb{F}_q),
 \begin{pmatrix}
 0 & 0 \\
 1 & 0
 \end{pmatrix}.
 \]
Example (b)

For any \(ab \in M = \mathbb{F}_q^2 \), form an element in \(A^{q+1} \) by multiplying \(ab \) times the matrices above. Because \(G_l = \mathbb{F}_q^\times \), it suffices to compute elements of \(M \) of the form \(1b \) or \(01 \). (\(b \) varies over \(\mathbb{F}_q \).)

<table>
<thead>
<tr>
<th>code</th>
<th>input</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta_+)</td>
<td>1b</td>
<td>00, 1b, 1b, \ldots, 1b</td>
</tr>
<tr>
<td>(\eta_-)</td>
<td>1b</td>
<td>\ldots, (1 + bc)0, \ldots, b0</td>
</tr>
<tr>
<td>(\eta_+)</td>
<td>01</td>
<td>00, 01, 01, \ldots, 01</td>
</tr>
<tr>
<td>(\eta_-)</td>
<td>01</td>
<td>\ldots, c0, \ldots, 10</td>
</tr>
</tbody>
</table>
Example (c)

- For nonzero inputs, check that \(\text{wt(output)} = q \) for both \(\eta_{\pm} \).
- Also verify that \(\eta_{+} \) has a zero position (the first), but \(\eta_{-} \) does not. In fact, for the \(q + 1 \) different inputs shown, the zero positions in \(\eta_{-}(\text{input}) \) occur in every possible position. (\(c = 0 \) comes first.)

<table>
<thead>
<tr>
<th>input</th>
<th>zero position in (\eta_{-}) output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(q + 1)</td>
</tr>
<tr>
<td>(1b) ((b \neq 0))</td>
<td>(c = -b^{-1})</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
</tr>
</tbody>
</table>
Benson’s example from lecture 3

Let R be a ring consisting of all matrices over \mathbb{F}_2 of the following form:

$$
\begin{pmatrix}
 a_1 & 0 & a_2 & 0 & 0 & 0 \\
 0 & a_1 & 0 & a_2 & a_3 & 0 \\
 a_4 & 0 & a_5 & 0 & 0 & 0 \\
 0 & a_4 & 0 & a_5 & a_6 & 0 \\
 0 & 0 & 0 & 0 & 0 & a_9 \\
 a_7 & 0 & a_8 & 0 & 0 & a_9
\end{pmatrix}.
$$

This R is QF but not Frobenius.
Benson’s example: not Frobenius

Setting all entries equal to zero except a_7 and a_8 yields an $\mathbb{F}_2 = M_{1\times 2}(\mathbb{F}_2) \subset \text{Soc}(R)$:

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_7 & 0 & a_8 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
$$
Other alphabets

- Assume alphabet \(A \), a left \(R \)-module, with Hamming weight.
- Just as for rings, if \(\text{Soc}(A) \cong \bigoplus M_{n_i \times k_i}(\mathbb{F}_{q_i}) \) with all \(n_i \geq k_i \), then \(\text{Soc}(A) \), and hence \(A \), admits a left generating character. This defines an embedding of \(A \) into \(\hat{R} \).
- Thus if \(A \) does not embed into \(\hat{R} \), it has an \(M_{n_i \times k_i}(\mathbb{F}_{q_i}) \), \(n_i < k_i \), inside \(\text{Soc}(A) \).
- The same argument proves the existence of counterexamples over the alphabet \(A \).
- The extension theorem holds for \(A \) iff \(A \) is pseudo-injective and \(A \) embeds in \(\hat{R} \).