Character-Theoretic Tools for Studying Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Algebraic Methods in Coding Theory
CIMPA School
Ubatuba, Brazil
July 3, 2017
Acknowledgments

- Thanks to CIMPA, our other sponsors, and the organizing committees for organizing this school, for inviting me to speak, and for their hospitality.
1. Linear Codes over Finite Fields

- Definitions
- Error correction and the Hamming weight
- Syndrome decoding and the dual code
- Equivalence of codes
Objectives

▶ Introduce some the language of coding theory over finite fields.
▶ Introduce, with examples, some of the mathematical problems that will be discussed in later lectures.
Basic vocabulary

- Let \mathbb{F} be a finite field.
- A **linear code** over \mathbb{F} of **length** n is a vector subspace $C \subseteq \mathbb{F}^n$.
- Let $k = \dim_{\mathbb{F}} C$ be the dimension of C over \mathbb{F}.
- We say that C is a linear $[n, k]$-code.
- The elements of C are called **codewords**.
Encoding

- A linear code is often presented by an encoding map, represented by a \textit{generator matrix} \(G \).
- \(G \) will be a matrix of size \(k \times n \) of rank \(k \).
- \(G \) defines a linear transformation \(\mathbb{F}^k \rightarrow \mathbb{F}^n \), \(x \mapsto xG \), with inputs written on the left. (Why? Tradition!)
- \(\mathbb{F}^k \) is the \textit{information space}. The linear code \(C \) is the image of the encoding map (row space of \(G \)).
- There are many possible encoding maps: use \(PG, P \) invertible \(k \times k \).
Errors in transmission

- Error-correcting codes are designed to detect and correct errors in transmission in communication channels.

\[
\begin{align*}
\mathbb{F}^k & \xrightarrow{\text{encode}} \mathbb{F}^n \\
\mathbb{F}^n & \xrightarrow{\text{transmit}} \mathbb{F}^n + \text{noise} \\
\mathbb{F}^n & \xrightarrow{\text{decode}} \mathbb{F}^n \\
\mathbb{F}^n & \xrightarrow{\text{unencode}} \mathbb{F}^k
\end{align*}
\]

- The code adds redundancy which, if done properly, may allow errors to be corrected (“decoding”).
Parity check matrix

- Given a linear $[n, k]$-code C, we can think of C as the solution space of a system of linear equations.
- A parity check matrix for C is an $(n - k) \times n$ matrix H of rank $n - k$ such that

$$C = \{ c \in \mathbb{F}^n : Hc^\top = 0 \}.$$
Dual code

- Given linear $[n, k]$-code C, the dual code C^\perp is the linear $[n, n - k]$-code generated by the parity check matrix of C.
- Define the **dot product** on \mathbb{F}^n by $a \cdot b = \sum_{i=1}^{n} a_i b_i$.
- Then $C^\perp = \{ b \in \mathbb{F}^n : c \cdot b = 0, \text{ for all } c \in C \}$.
- Note that $(C^\perp)^\perp = C$.

Example

\[\mathbb{F} = \mathbb{F}_2, \ n = 7, \ k = 4, \ n - k = 3: \]

\[G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]

\[H = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \]
Suppose $c \in C$ is transmitted, and suppose some error is introduced, so that $y = c + e$ is received. Here, e is the (yet to be determined) error vector.

- Applying the parity check matrix, we see that $Hy^T = Hc^T + He^T = He^T$ (the “syndrome”).
- The error vector e lies in the same coset of C as the received vector y.
Likelihood

- Of all vectors in the coset $y + C$, which is the most likely to be the error vector?
- One model of a communication channel: the symmetric binary channel.
- Let $\mathbb{F} = \mathbb{F}_2$, the binary field. When an element of \mathbb{F}_2 is transmitted, there is a probability of p that the other element will be received. Assume $0 \leq p \leq 1/2$.
Hamming distance and Hamming weight

- The **Hamming weight** \(\text{wt}(y) \) of a vector \(y \in \mathbb{F}^n \) is the number of nonzero entries in \(y \);
 \[
 \text{wt}(y) = | \{ i : y_i \neq 0 \} |.
 \]

- The **Hamming distance** between two vectors \(y, z \in \mathbb{F}^n \) is the Hamming weight of their difference:
 \[
 d(y, z) = \text{wt}(y - z).
 \]

- The Hamming distance \(d \) is a distance, so \((\mathbb{F}^n, d) \) is a (discrete) metric space.
Likelihood, again

- Provided \(p < 1/2 \), an error vector with small Hamming weight is more likely to occur than one of larger Hamming weight.
- Syndrome decoding: given a received vector \(y = c + e \), the most likely error vector is a vector of minimal Hamming weight in the coset \(y + C \).
- Such an \(e \) exists, but it may not be unique.
Minimum distance of a code

- Given a code C, the **minimum (Hamming) distance** of C is
 \[d_C = \min \{ d(b, c) : b, c \in C, b \neq c \}. \]
- For linear codes, this equals the **minimum (Hamming) weight**, \(\min \{ \text{wt}(c) : c \in C, c \neq 0 \} \).
- Suppose C has minimum distance d_C. Let
 \[t = \lfloor (d_C - 1)/2 \rfloor. \]
- Nearest neighbor decoding corrects up to t errors.
Example (again)

- $\mathbb{F} = \mathbb{F}_2$, $n = 7$, $k = 4$:

$$G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}$$

- Codewords: 0000000, 0001111, 0110011, 1010101, 1111111, 0111100, 1011010, 1110000, 1100110, 1001100, 0101010, 1101001, 1000011, 0100101, 0011001, 0010110. $d_C = 3$.
Example (and again)

$\mathbb{F} = \mathbb{F}_2, n = 7, k = 3$:

$$H = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}$$

- Codewords: 0000000, 0001111, 0110011, 1010101, 0111100, 1011010, 1100110, 1101001. $d_{C^\perp} = 4$.
Decoding C

- Because $d_C = 3$, we can correct one error.
- If $\text{wt}(e) = 1$, there is a single 1 in position i.
- The syndrome He^T is the ith column of H.
- The ith column of H is the base 2 expression of i, so the syndrome tells us the location of the error.
- Suppose $y = 1011101$ is received. Syndrome $Hy^T = 100^T$, so most likely $c = 1010101$ was sent.
Given C, its **weight distribution** is (A_0, A_1, \ldots, A_n), where $A_i = |\{ c \in C : \text{wt}(c) = i \}|$, the number of codewords of Hamming weight i.

For our example, C has $(1, 0, 0, 7, 7, 0, 0, 1)$.

C^\perp has $(1, 0, 0, 0, 7, 0, 0, 0)$.

In the next slide, we organize this information differently.
For a linear code \(C \subseteq A^n \), define the **Hamming weight enumerator** of \(C \) by

\[
hwe_C(X, Y) = \sum_{x \in C} X^{n - \text{wt}(x)} Y^{\text{wt}(x)}.
\]

\(hwe_C(X, Y) = \sum_{i=0}^{n} A_i X^{n-i} Y^i \), where \(A_i \) is the number of codewords in \(C \) of Hamming weight \(i \).

In our example:

\[
hwe_{C^\perp}(X, Y) = X^7 + 7X^3Y^4,
\]

\[
hwe_C(X, Y) = X^7 + 7X^4Y^3 + 7X^3Y^4 + Y^7.
\]
MacWilliams identities

- One can verify in our binary example that the weight enumerators are related in the following way:

\[hwe_C(X, Y) = \frac{1}{|C^\perp|} \ hwe_{C^\perp}(X + Y, X - Y). \]
Properties of dual codes

- Given a linear code $C \subseteq \mathbb{F}^n$.
- Dual C^\perp is also a linear code in \mathbb{F}^n.
- Double dual: $(C^\perp)^\perp = C$.
- Dimension/size: $\dim C + \dim C^\perp = n$, or: $|C| \cdot |C^\perp| = |\mathbb{F}^n|$.
- The MacWilliams identities.
- The next several lectures will be about generalizations of these properties.
Equivalence of linear codes

- When should two linear codes be considered as being the same?
 - “Extrinsic”: differ by a monomial transformation of \mathbb{F}^n.
 - “Intrinsic”: related by a weight-preserving isomorphism.
Monomial transformations

- A monomial transformation $T : \mathbb{F}^n \rightarrow \mathbb{F}^n$ is an invertible linear transformation whose matrix has exactly one nonzero entry in each row and column (a “monomial matrix”).

- Monomial transformations are precisely the invertible linear transformations $\mathbb{F}^n \rightarrow \mathbb{F}^n$ that preserve the Hamming weight.

- Linear codes $C_1, C_2 \subseteq \mathbb{F}^n$ are monomially equivalent if there exists a monomial transformation T with $T(C_1) = C_2$.
Weight-preserving maps

- If $T(C_1) = C_2$, then the restriction of T to C_1 is a linear isomorphism $C_1 \rightarrow C_2$ that preserves Hamming weight.
- Is the converse true?
- Call this the “MacWilliams extension theorem”.
Upcoming lectures

- Lectures 2 and 3 will address generalizations of dual codes and the MacWilliams identities for linear codes defined over finite rings and modules.
- Lecture 4 will discuss self-dual codes (where $C = C^\perp$) in a general setting. Lecture 5: exercises!
- Lectures 6–10 will deal with different aspects of the extension problem: do weight-preserving maps extend to monomial transformations?
- Many of the techniques are based on characters of finite abelian groups and the modules built out of these characters.