The Extension Theorem for Lee Weight Using Dirichlet L-functions

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

University of São Paulo
July 17, 2017
In memoriam:
Maryam Mirzakhani,
Joint work

- This is joint work with Sergii Dyshko and Philippe Langevin.
Linear codes

- Let R be a finite commutative ring with 1.
- A **linear code** of length n over R is a submodule $C \subseteq R^n$.
- Classically, R was a finite field \mathbb{F}_q.
- Our interest today will be $R = \mathbb{Z}/N\mathbb{Z}$, especially the case where $N = p^k$, p prime.
Presenting a linear code

- Linear codes are often presented via a **generator matrix** G of size $k \times n$ over R.
- The linear code is the submodule of R^n generated by the rows of G.
- The generator matrix defines a homomorphism $R^k \to R^n$ via $x \mapsto xG$. If this map has a kernel, we may instead write the map as $M = R/\ker \to R^n$.
- We will call M an **information module**.
Errors in transmission

- Error-correcting codes are designed to detect and correct errors in transmission in communication channels.

\[M \xrightarrow{\text{encode}} R^n \xrightarrow{\text{transmit}} R^n \xrightarrow{\text{decode}} R^n \xrightarrow{\text{unencode}} M \]

- The code adds redundancy which, if done properly, may allow errors to be corrected ("decoding").
Weights and distances

- When an element of R is transmitted, a different element might be received (a ‘noisy channel’).
- Weights and distances are often defined on R and R^n as a proxy for probabilities of errors.
- A **weight** w on R is any function $w : R \to \mathbb{C}$ with $w(0) = 0$. Extend to R^n by $w(\vec{x}) = \sum_{i=1}^{n} w(x_i)$.
- The **distance** on R^n determined by w is $d_w(\vec{x}, \vec{y}) = w(\vec{x} - \vec{y})$, where we assume $w(-r) = w(r)$ for all $r \in R$.

Lee Weight
July 17, 2017
Three important examples

- For any R, the **Hamming weight** is $H(0) = 0$ and $H(r) = 1$ for $r \neq 0$.

- For $R = \mathbb{Z}/N\mathbb{Z}$, the **Lee** and **Euclidean** weights are

 $$L(r) = \min\{r, N - r\},$$
 $$E(r) = \min\{r^2, (N - r)^2\},$$

 where $r \in R$ is represented by $r \in \{0, 1, \ldots, N - 1\}$.

Weight-preserving maps

- What are the invertible homomorphisms $R^n \to R^n$ that preserve one of these weights?

- A monomial transformation $T : R^n \to R^n$ is determined by a permutation σ of $\{1, 2, \ldots, n\}$ and units u_1, \ldots, u_n of R. Define

 $$T(\vec{x}) = (u_1x_{\sigma(1)}, \ldots, u_nx_{\sigma(n)}).$$

- Hamming weight: all monomial transformations.

- Lee or Euclidean: need all $u_i = \pm 1$; ‘signed permutations’.
Extension problem

- If $C \subseteq R^n$ is a linear code and T is a monomial transformation or signed permutation, then the restriction of T to C is an isomorphism from C to $C' = T(C)$ that preserves the weight (an ‘isometry’).

- Is the converse true?

- Extension problem: determine conditions on R and the weight w so that every isometry $C \rightarrow R^n$ extends to an isometry $R^n \rightarrow R^n$.

- Say: ‘R and w have the extension property’ (EP).
Some of what is known

- Hamming weight has EP: over finite fields (MacWilliams, 1961–62); over finite Frobenius rings (W, 1999); only over Frobenius rings (W, 2008).
- Lee weight has EP over $\mathbb{Z}/N\mathbb{Z}$ when N is: 2^k, 3^k, prime $p = 2q + 1$, q prime (Langevin, W, 2000); prime $p = 4q + 1$, q prime (Barra, 2012); any prime p (Dyskho, L, W, 2016); any prime power p^k (L, W, 2016); any positive integer (D, 2017).
- Euclidean: prime powers p^k (L, W).
Symmetrized weight compositions

- The Lee and Euclidean weights are invariant under the action of $U = \{\pm 1\}$: $L(-x) = L(x)$ and $E(-x) = E(x)$.
- Denote the set of nonzero orbits of U on $R = \mathbb{Z}/N\mathbb{Z}$ by \mathcal{O}. Orbit of r is $[r] = \{\pm r\}$.
- For $[r] \in \mathcal{O}$ and $x \in R^n$, define
 \[
 SWC_{[r]}(x) = |\{i : x_i \in [r]\}|.
 \]
swc has EP

Theorem
Suppose $R = \mathbb{Z}/N\mathbb{Z}$ and $U = \{\pm 1\}$. If $f : C \to R^n$ preserves swc, i.e., $\text{swc}_{[r]}(f(x)) = \text{swc}_{[r]}(x)$ for all $x \in C$ and $[r] \in \mathcal{O}$, then f extends to a signed permutation.

- Finite field case: Goldberg (1980)
- Finite Frobenius rings: W (1997)
Proof

- For fixed $x \in C$, there exists a permutation σ_x and units $u_{i,x} \in U$ such that $f_i(x) = u_{i,x}x_{\sigma_x(i)}$.
- Special character on R: $\rho(r) = \exp(2\pi \sqrt{-1} r / N)$.
- Multiply by $u \in U$, plug into ρ, and sum:

$$
\sum_{i=1}^{n} \sum_{u \in U} \rho(u f_i(x)) = \sum_{i=1}^{n} \sum_{u \in U} \rho(u u_{i,x} x_{\sigma_x(i)})
$$

$$
= \sum_{i=1}^{n} \sum_{u \in U} \rho(u x_{\sigma_x(i)}) = \sum_{i=1}^{n} \sum_{u \in U} \rho(u x_i)
$$
Proof, continued

- Equation of characters: for all $x \in C$,

$$
\sum_{i=1}^{n} \sum_{u \in U} \rho(uf_i(x)) = \sum_{j=1}^{n} \sum_{v \in U} \rho(vx_j)
$$

- Linear independence of characters: for each i and $u = 1$ in the left, there exists $j = \sigma(i)$ and $v_i \in U$ on the right, with $\rho(f_i(x)) = \rho(v_i x_{\sigma(i)})$.

- ρ is injective: $f_i(x) = v_i x_{\sigma(i)}$. Signed permutation!
Expressing w in terms of swc

- Suppose weight w satisfies $w(-r) = w(r)$, $r \in R$.
- Then, for $x \in R^n$ and $[t] \in \mathcal{O}$:

$$w(x) = \sum_{[r] \in \mathcal{O}} w(r) \, swc_{[r]}(x)$$

$$w(tx) = \sum_{[r] \in \mathcal{O}} w(tr) \, swc_{[r]}(x)$$
Criterion

- Set $W_w = (w(tr))_{[t],[r]}$, a $|\mathcal{O}| \times |\mathcal{O}|$ matrix.

Theorem (W, 1999)

If the matrix W_w is invertible, then w has EP.

- Use $w(tx) = \sum_{[r] \in \mathcal{O}} w(tr) \text{swc}_{[r]}(x)$ to show that swc is preserved.
Factoring $\det W_w$

- When $N = p$ prime, $R = \mathbb{Z}/p\mathbb{Z}$ is a field, and \mathcal{O} is a cyclic group.

- Dedekind-Frobenius (1896): $\det W_w$ factors into linear expressions in w given by the Fourier transforms of w with respect to the characters of \mathcal{O} (even Dirichlet characters mod p).

- When $N = p^k$, p prime, there is a similar factorization in terms of even Dirichlet characters mod p^k and their conductors (W, 2000).
Fourier transforms

- From here on, assume $N = p$, an odd prime. The case of $N = p^k$ is similar, but more intricate.
- The factors of $\det W_w$ are $\hat{w}(\chi) = \sum_{r \in \mathcal{O}} w(r)\chi(r)$, where χ is a character of \mathcal{O} (homomorphism $\chi : \mathcal{O} \to \mathbb{C}^\times$).
- $\mathcal{O} \leftrightarrow \{ j : 1 \leq j < p/2 \}$: $\hat{w}(\chi) = \sum_{j < p/2} w(j)\chi(j)$.
- If $f(x) = w(2x)$, then $\hat{f}(\chi) = \bar{\chi}(2)\hat{w}(\chi)$.
- $\sum_{j < p/2} w(2j)\chi(j) = \sum_{j < p/2} w(j)\chi(2^{-1}j) = \sum_{j < p/2} w(j)\bar{\chi}(2)\chi(j)$.
Special feature of Lee weight

- Remember that $L(r) = \min\{r, N - r\}$.
- If $0 \leq r < p/4$, then $L(2r) = 2L(r)$.
- If $p/4 < r < p/2$, then $L(2r) = p - 2L(r)$.
- For any r, $0 \leq r < p/2$,

 $(L(2r) - 2L(r))(L(2r) - p + 2L(r)) = 0$.
Relation between Lee and Euclidean weights

- For any \(r, 0 \leq r < p/2, \)
 \[
 (L(2r) - 2L(r))(L(2r) - p + 2L(r)) = 0.
 \]
- \(L(2r)^2 - 4L(r)^2 = p(L(2r) - 2L(r)) \)
- \(E(2r) - 4E(r) = p(L(2r) - 2L(r)) \)
- FT: \(\tilde{\chi}(2) - 4)\hat{E}(\chi) = p(\tilde{\chi}(2) - 2)\hat{L}(\chi). \)
- Thus: \(\hat{E}(\chi) = 0 \) if and only if \(\hat{L}(\chi) = 0. \)
Relation between determinants

- Suppose 2 has order \(r \) in \(O \), then

\[
(2^r + 1)^{(p-1)/(2r)} \det W_E = p^{(p-1)/2} \det W_L.
\]

- Take the product of

\[
(\bar{\chi}(2) - 4)\hat{E}(\chi) = p(\bar{\chi}(2) - 2)\hat{L}(\chi)
\]

over all \(\chi \).

- Make use of factorization \(t^r - 1 = \prod_{j=0}^{r-1}(t - \zeta^j) \), and homomorphism \(\chi \mapsto \zeta = \bar{\chi}(2) \).
Dirichlet characters

- Given a character χ of \mathbb{F}_p^\times, set $\chi(0) = 0$ and extend χ to be periodic of period p: a Dirichlet character mod p.

- The **Dirichlet L-function** associated to χ:

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$

- Converges absolutely for $\Re(s) > 1$.

- Functional equation allows analytic continuation to entire function of s ($\chi \neq 1$).
Generalized Bernoulli numbers

- For $\chi \neq 1$, define $B_n(\chi)$ via:

$$\sum_{a=1}^{p} \frac{\chi(a) te^{at}}{e^{pt} - 1} = \sum_{n=0}^{\infty} B_n(\chi) \frac{t^n}{n!}.$$

- $B_1(\chi) = (1/p) \sum_{a=1}^{p} a \chi(a)$.
- $B_2(\chi) = (1/p) \sum_{a=1}^{p} (a^2 - ap) \chi(a)$.

Facts about Dirichlet L-functions

- For $n \geq 1$, $L(1 - n, \chi) = -B_n(\chi)/n$.
- For $n \geq 1$, if χ is even, $\chi \neq 1$, then $L(1 - n, \chi) = 0$ if and only if n is odd.
Proof of Main Theorem

Outline

▶ We want to show that \(\det W_w \neq 0 \) for \(w = L \) or \(w = E \).
▶ To the contrary, assume \(\det W_w = 0 \), so that \(\hat{w}(\chi) = 0 \) for some even character \(\chi \neq 1 \).
▶ Remember that \(\hat{L}(\chi) = 0 \) iff \(\hat{E}(\chi) = 0 \).
▶ Calculate \(B_1 \) and \(B_2 \).
▶ Contradict information about \(L(1 - n, \chi) = 0 \).
Proof of Main Theorem

Preliminary calculation

- In all that follows, \(\chi \) is even and \(\chi \neq 1 \).

\[
2\hat{1}(\chi) = 2 \sum_{j<p/2} \chi(j) = \sum_{j=1}^{p} \chi(j) = 0.
\]

- The sum of any nontrivial character over its group vanishes.
\(B_1 \) calculation

\[pB_1(\chi) = \sum_{j=1}^{p} j \chi(j). \]

- Split in two and re-index, using \(\chi \) even:

\[
\begin{align*}
pB_1(\chi) &= \sum_{j<p/2} j \chi(j) + \sum_{j<p/2} (p - j) \chi(j) \\
&= \sum_{j<p/2} p \chi(j) = p \hat{1}(\chi) = 0.
\end{align*}
\]
\(B_2 \) calculation

\[
pB_2(\chi) = \sum_{j=1}^{p} (j^2 - jp)\chi(j) = \sum_{j=1}^{p} j^2\chi(j).
\]

Split in two, re-index, use \(\hat{L}(\chi) = \hat{E}(\chi) = 0 \):

\[
pB_2(\chi) = \sum_{j<p/2} j^2\chi(j) + \sum_{j<p/2} (p-j)^2\chi(j)
\]

\[
= p^2 \hat{1}(\chi) - 2p\hat{L}(\chi) + 2\hat{E}(\chi) = 0
\]
Contradict $L(-1, \chi)$

- Under the hypothesis that $\hat{L}(\chi) = \hat{E}(\chi) = 0$ for even $\chi \neq 1$:
 - $L(-1, \chi) = L(1 - 2, \chi) = -B_2(\chi)/2 = 0$.
 - But, for even $\chi \neq 1$, $L(1 - n, \chi) = 0$ if and only if n is odd.
- Thus L and E have EP over $\mathbb{Z}/p\mathbb{Z}$.
Thank you

- Thank you for the opportunity to speak to you.
- Thank you for your kind attention and your warm hospitality.