Failure of the MacWilliams Identities for the Lee Weight Enumerator over \mathbb{Z}_m, $m \geq 5$

Noha Abdelghanya,*, Jay A. Wooda

aWestern Michigan University, 1903 W. Michigan Ave., Kalamazoo, MI 49008 USA

Abstract

In this paper we show the nonexistence of any version of the MacWilliams identities for Lee weight enumerators over \mathbb{Z}_m, $m \geq 5$.

Keywords: Lee weight, MacWilliams identities

2010 MSC: 94B05

1. Introduction

The MacWilliams identities give a relation between the Hamming weight enumerator of a linear code and the Hamming weight enumerator of its dual. For a linear code C over a finite field \mathbb{F}_q, the MacWilliams identities are given by

$$\text{lwe}_C(X,Y) = \frac{1}{|C|} \text{lwe}_C(X + (q-1)Y, X - Y),$$

where lwe refers to the Lee weight enumerator [5]. The same statement of the MacWilliams identities is valid for linear codes over a finite Frobenius ring of size q with respect to the Hamming weight [8]. We are interested in the question of whether there is some version of the MacWilliams identities for other alphabets and other weight functions.

In this paper we consider the Lee weight over \mathbb{Z}_m, the integers modulo m. The Lee weight and the Hamming weight are equal when $m = 2$ or $m = 3$; thus the MacWilliams identities are valid in those cases. For codes over \mathbb{Z}_4, it is known from [3] that the Lee weight enumerator of a linear code C over \mathbb{Z}_4 and its dual are related:

$$\text{lwe}_{C^\perp}(X,Y) = \frac{1}{|C|} \text{lwe}_C(X + Y, X - Y).$$

For $m \geq 5$, it was shown in [7] that the change of variables $X \rightarrow X + (q-1)Y$ and $Y \rightarrow X - Y$ does not give a version of the MacWilliams identities for any prime power $q|m$. This leaves open the possibility of other changes of variables that might give a relation between the Lee weight enumerators of a code and its dual. The main result of this paper is that there is no well-defined relation between the Lee weight enumerators of a code and its dual for $m \geq 5$. Specifically, this paper proves the following

Theorem 1.1. Suppose $m \geq 5$. There exist linear codes C_1, C_2 over \mathbb{Z}_m satisfying $\text{lwe}_{C_1} = \text{lwe}_{C_2}$ and $\text{lwe}_{C_1^\perp} \neq \text{lwe}_{C_2^\perp}$.

Let $\mathcal{LC}(\mathbb{Z}_m)$ denote the collection of all linear codes over \mathbb{Z}_m, and let $\dashv: \mathcal{LC}(\mathbb{Z}_m) \rightarrow \mathcal{LC}(\mathbb{Z}_m)$ denote the map sending a linear code C to its dual code C^\perp. Then Theorem 1.1 says that it is impossible to find a well-defined map making the following diagram commute.

*Corresponding author

Email addresses: noha.abdelghany@wmich.edu (Noha Abdelghany), jay.wood@wmich.edu (Jay A. Wood)
Corollary 1.2. There are no MacWilliams identities relating the Lee weight enumerators of linear codes and their dual codes over \mathbb{Z}_m, for $m \geq 5$.

Here is an outline of the proof of Theorem 1.1, which will also serve as a guide to the rest of the paper. Explicit examples of linear codes C_1, C_2 over \mathbb{Z}_m satisfying $lwe_{C_1} = lwe_{C_2}$ and $lwe_{C_1^⊥} \neq lwe_{C_2^⊥}$ are constructed: in an ad hoc fashion for $m = 5, 6, 8, 9$ (in Section 2), and in a systematic fashion for all primes $p \geq 7$ (in Section 3).

To handle other values of $m \geq 5$, which necessarily are integer multiples of the preceding cases, in Section 4 we analyze the relationship between a linear code $C \subseteq \mathbb{Z}_m^n$ and the linear code $aC \subseteq \mathbb{Z}_{am}^n$, defined by scalar multiplying each codeword of C by a. In particular, Lemma 4.1 shows that lwe determines lwe_{ac}, so that $lwe_{C_1} = lwe_{C_2}$ will imply $lwe_{ac_{C_1}} = lwe_{ac_{C_2}}$, which is Corollary 4.2. On the other hand, Lemma 4.3 allows us to compare the number of codewords of sufficiently small weight in $C^⊥$ and $(aC)^⊥$. Consequently, if $lwe_{C_1^⊥} \neq lwe_{C_2^⊥}$ because the number of codewords of a sufficiently small weight differ, then the same will be true for $(aC_1)^⊥$ and $(aC_2)^⊥$, so that $lwe_{(ac_{C_1})^⊥} \neq lwe_{(ac_{C_2})^⊥}$, which is Corollary 4.4.

2. Preliminaries and examples for small values of m

In this paper we are interested in linear codes defined over the ring \mathbb{Z}_m of integers modulo m. A linear code C of length n over \mathbb{Z}_m is a submodule of \mathbb{Z}_m^n. Vectors $v \in \mathbb{Z}_m^n$ have the form $v = (v_1, \ldots, v_n)$. The dual code $C^⊥$ in \mathbb{Z}_m^n is defined by $C^⊥ = \{v \in \mathbb{Z}_m^n : \sum_{i=1}^n v_i c_i = 0, \text{ for all } c \in C\}$.

The Lee weight is defined on \mathbb{Z}_m by $l_m(i) = \left|\frac{i}{m}\right|$, the ordinary absolute value on \mathbb{Z}, where \mathbb{Z}_m is thought of as $\mathbb{Z}_m = \{i \in \mathbb{Z} : -m/2 < i \leq m/2\}$. We will write just $l(i)$ when m is obvious from context. For vectors $v \in \mathbb{Z}_m^n$, define $l(v) = \sum_{i=1}^n l(v_i)$. For a linear code C of length n over \mathbb{Z}_m, the maximum Lee weight in C is $n[m/2]$. The Lee weight enumerator of C is an element in the polynomial ring $\mathbb{C}[X,Y]$ given by

$$lwe_C(X,Y) = \sum_{c \in C} X^{l(c)} Y^{l(c)}.$$

Let $A_i(C)$ denote the number of codewords of Lee weight i in C, that is, $A_i(C) = |\{c \in C : l(c) = i\}|$, for $0 \leq i \leq n[m/2]$. The Lee weight enumerator of C can then be rewritten as

$$lwe_C(X,Y) = \sum_{i=0}^{n[m/2]} A_i X^{l(i)} Y^{l(i)}.$$

In the following we will present examples of pairs of codes C_1, C_2 with $lwe_{C_1} = lwe_{C_2}$ and $lwe_{C_1^⊥} \neq lwe_{C_2^⊥}$ over \mathbb{Z}_m, for $m = 5, 6, 8, 9$.

Example 2.1. Let $m = 5$. Let G_1 and G_2 be generator matrices for C_1 and C_2 given by the following table. The table shows how many times each column type appears in G_1 and G_2.

<table>
<thead>
<tr>
<th>Column Type</th>
<th>0 0 1 1 1 1</th>
<th>1 2 2 2 2 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity η in G_1</td>
<td>5 5 5 5 5 5</td>
<td>1 2 2 2 2 2</td>
</tr>
<tr>
<td>Multiplicity η in G_2</td>
<td>9 6 8 5 9 5</td>
<td>2 6 5 5 2</td>
</tr>
</tbody>
</table>

Then $lwe_{C_1}(X,Y) = lwe_{C_2}(X,Y) = X^{140} + 4X^{65}Y^{75} + 20X^{50}Y^{90}$ but $lwe_{C_1^⊥} \neq lwe_{C_2^⊥}$. In fact, $A_2(C_1^⊥) = 380$ and $A_2(C_2^⊥) = 400$. The counts for A_2 are obtained as follows. A dual codeword of Lee weight 2 has either
one nonzero entry of the form ± 2 or two nonzero entries of the form ± 1, ± 1. There are no dual codewords of the first type (i.e., a single one nonzero entry of the form ± 2) because there are no zero columns in G_1 or G_2. Dual codewords of the second type (i.e., two ± 1s) must occur with opposite signs, because no column type is annihilated by 2 and no two column types sum to zero. The only dual codewords of the second type arise by subtracting, in either order, columns of the same type. Thus

$$A_2(C_i^\perp) = 2\sum_{\eta} \binom{n}{2} = \begin{cases} 380, & i = 1, \\ 400, & i = 2, \end{cases}$$

where the sum is over the multiplicities η given in the table.

Example 2.2. Let $m = 6$. Consider the codes C_1 and C_2 generated by

$$G_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}, \quad G_2 = \begin{bmatrix} 1 & 1 & 3 & 3 \end{bmatrix}. $$

Then C_1 and C_2 are given by

$$C_1 = \{(0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4),(5,5,5,5)\},$$

$$C_2 = \{(0,0,0,0),(1,1,3,3),(2,2,0,0),(3,3,3,3),(4,4,0,0),(5,5,3,3)\}.$$

Then $\text{lwe}_{C_1}(X,Y) = \text{lwe}_{C_2}(X,Y) = X^{12} + 2X^8Y^4 + 2X^4Y^8 + Y^{12}$.

We show that $\text{lwe}_{C_1} \neq \text{lwe}_{C_2}$ by showing that $A_2(C_1^\perp) \neq A_2(C_2^\perp)$. As we saw in Example 2.1, a dual codeword of weight 2 either contains a single nonzero entry of ± 2 or two nonzero entries of ± 1. For C_1, since none of the columns of G_1 is annihilated by ± 2, then all the codewords of weight 2 in C_1^\perp contain two nonzero entries of ± 1. It is easy to see that if the two nonzero entries of such a codeword are equal, both equal to 1 or both equal to -1, then that codeword does not annihilate G_1. But if one entry is 1 and the other is -1 then that codeword does indeed annihilate G_1. There are $4 \cdot 3 = 12$ such vectors of length 4. Thus $A_2(C_1^\perp) = 12$.

For C_2^\perp, the third and the fourth column of G_2 are annihilated by ± 2, therefore the four codewords $(0,0,\pm 2,0)$, $(0,0,0,\pm 2)$ are elements of C_2^\perp. Also, adding or subtracting the last two columns of G_2 gives the zero column, therefore the four codewords $(0,0,\pm 1,\pm 1)$ are all elements of C_2^\perp. Finally, since the first two columns of G_2 are identical, then we get that $(1,-1,0,0),(-1,1,0,0)$ are codewords in C_2^\perp. Thus $A_2(C_2^\perp) = 10$, and $\text{lwe}_{C_1} \neq \text{lwe}_{C_2}$.

The following example is due the referee of Example 5.5 and also appeared in Example 2.3.

Example 2.3. Let $m = 8$. Consider the codes C_1 and C_2 generated by

$$G_1 = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}, \quad G_2 = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}. $$

We get $\text{lwe}_{C_1}(X,Y) = \text{lwe}_{C_2}(X,Y) = X^{12} + 2X^8Y^4 + 5X^4Y^8$.

We show that $\text{lwe}_{C_1} \neq \text{lwe}_{C_2}$ by showing that C_1^\perp and C_2^\perp have different numbers of codewords of weight 3. Suppose that $c = (c_1,c_2,c_3)$ has weight 3. Then c is an element of C_1^\perp if and only if $G_1c^T = 0$, i.e., $c_1 + c_2 + 2c_3 = 0$. Since $1(c) = 3$, the entries c_1, c_2, and c_3 can have values from $\{0,\pm 1,\pm 2,\pm 3\}$ only. It is straightforward to find that the solutions of $c_1 + c_2 + 2c_3 = 0$ with those restrictions are

$$\{-1, -1, 1, 1, 1, 1, 2, 0, -1, 0, 2, -1, -2, 0, 1, 0, -2, 1\}. $$

Thus $A_3(C_1^\perp) = 6$. Similarly, we find that the codewords of weight 3 in C_2^\perp are

$$\{(1,1,1),(-1,-1,-1),(1,1,-1),(1,-1,1),(1,1,1)\}. $$

Thus $A_3(C_2^\perp) = 4$. This shows that $A_3(C_1^\perp) \neq A_3(C_2^\perp)$ and hence $\text{lwe}_{C_1} \neq \text{lwe}_{C_2}$.

3
Example 2.4. Let \(m = 9 \). Define \(G_1 \) to be a \(1 \times 133 \) matrix consisting of 33 entries equal to 1, 24 entries equal to 2, 70 entries equal to 3, and 6 entries equal to 4. Let \(G_2 \) be a \(1 \times 133 \) matrix consisting of 9 entries equal to 1, 81 entries equal to 2, 36 entries equal to 4, and 7 entries equal to 0. Then \(\text{lwe}_{C_1} = \text{lwe}_{C_2} \), but \(\text{lwe}_{C_1} \neq \text{lwe}_{C_2} \). In fact,
\[
\text{lwe}_{C_1}(X, Y) = \text{lwe}_{C_2}(X, Y) = X^{532} + 2X^{343}Y^{189} + 2X^{217}Y^{315} + 4X^{154}Y^{378}.
\]
Because of the 0 entries in \(G_2 \), \(C^{\perp}_2 \) contains codewords of weight 1, while \(C^{\perp}_1 \) does not. I.e., \(A_1(C^{\perp}_1) \neq A_1(C^{\perp}_2) \).

3. Prime Modulus \(p, p \geq 7 \)

In this section we construct examples \(C_1 \) and \(C_2 \) with \(\text{lwe}_{C_1} = \text{lwe}_{C_2} \) and \(\text{lwe}_{C_1} \neq \text{lwe}_{C_2} \) over the integers modulo a prime \(p, p \geq 7 \).

Fix a prime \(p \), with \(p \geq 7 \). Let \(t = \frac{(p - 1)}{2} \). Let \(\mathbb{Z}_p^\times \) denote the set of nonzero elements of \(\mathbb{Z}_p \); \(\mathbb{Z}_p^\times \) is a group under multiplication, and \(\{ \pm 1 \} \) forms a subgroup. Let \(H \) denote the quotient group \(\mathbb{Z}_p^\times /\{ \pm 1 \} \), and let \(\pi \) be the canonical quotient map \(\pi : \mathbb{Z}_p^\times \to \mathbb{Z}_p^\times /\{ \pm 1 \} \). We choose the positive representative for each element in \(H \), so we identify the elements of \(H \) with the set \(\{ 1, 2, \ldots, t \} \).

Remark 3.1. Under the above identification, the quotient map \(\pi \) equals the Lee weight map \(L : \mathbb{Z}_p^\times \to \{ 1, 2, \ldots, t \} \).

We fix the following generator matrices \(G_1 \) and \(G_2 \), with corresponding codes \(C_1 \) and \(C_2 \). The matrix \(G_1 \) has size \(1 \times (t(t - 1)) \), consisting of \(t \) entries of each \(i \) in \(\{ 2, \ldots, t \} \). That is
\[
G_1 = \begin{bmatrix} 2 & \ldots & 2 & 3 & \ldots & 3 & \ldots & t & \ldots & t \end{bmatrix},
\]
where every number is repeated \(t \) times. And \(G_2 \) is the matrix of size \(1 \times (t(t - 1)) \), consisting of \(2(t - 1) \) entries of 1 and \(t - 2 \) entries of each \(i \) in \(\{ 2, \ldots, t \} \).

Lemma 3.2. For the linear codes given above, \(\text{lwe}_{C_1} = \text{lwe}_{C_2} \), with a common weight distribution given by
\[
A_0 = 1 \quad \text{and} \quad A_i\left(\frac{t(t+1)}{2} - i\right) = 2, \quad \text{for } 1 \leq i \leq t.
\]

Proof. Let \(i \) be in \(\{ 1, \ldots, t \} \). As an element of the group \(H \), we have that \(iH = H = \{ 1, 2, \ldots, t \} \). Let \(* \) denote multiplication in \(H \). In the following we reindex summations by using the fact that multiplying by a group element is a permutation of \(H \). For \(G_1 \),
\[
L(iG_1) = \sum_{j=2}^{t} L(ij)t = t \left(\sum_{j \in H} i* j - i* 1 \right) = t \left(\sum_{k=1}^{t} k - i \right) = t \left(\frac{t(t+1)}{2} - i \right).
\]
Since \(L(iG) = L(-iG) \) over \(\mathbb{Z}_m \), then we get that \(A_i\left(\frac{t(t+1)}{2} - i\right)(C_1) = 2 \) for \(i \) in \(\{ 1, \ldots, t \} \). For \(G_2 \),
\[
L(iG_2) = 2(t-1) L(i) + \sum_{j=2}^{t} (t-2) L(ij) = 2(t-1)i + (t-2) \left(\sum_{k=1}^{t} k - i \right)
\]
\[
= 2(t-1)i + (t-2) \left(\frac{t(t+1)}{2} - i \right) = t \left(\frac{(t-2)(t+1)}{2} + i \right),
\]
for all \(1 \leq i \leq t \). Therefore, \(A_0 = 1 \) and \(A_i\left(\frac{t(t+1)}{2} - i\right)(C_2) = 2 \), for \(1 \leq i \leq t \). Consider the substitution \(i = t + 1 - j \), then we have \(1 \leq j \leq t \), and
\[
t \left(\frac{(t-2)(t+1)}{2} + i \right) = t \left(\frac{(t-2)(t+1)}{2} + t + 1 - j \right) = t \left(\frac{t(t+1)}{2} - j \right)
\]
This shows that we indeed have \(A_0(C_2) = 1 \) and \(A_i\left(\frac{t(t+1)}{2} - i\right)(C_2) = 2 \), for \(1 \leq i \leq t \), as desired. \(\Box \)

Now we show that \(\text{lwe}_{C_1} \neq \text{lwe}_{C_2} \) by showing that the number of codewords of weight three in \(C^{\perp}_1 \) does not equal the number of codewords of weight three in \(C^{\perp}_2 \). We will study the cases when \(p = 1 \) \text{ mod } 4 and when \(p = 3 \) \text{ mod } 4 separately.
3.1. Primes congruent to 1 modulo 4

In this subsection \(p = 1 \mod 4 \). That is, \(t = (p - 1)/2 \) is an even number, and so \(t/2 \) is an integer. Suppose that \(C \) is a code generated by \(G \) of size \(1 \times n \) with no zero columns. The types of columns are \(\{1, 2, \ldots, t\} \). Let \(a_i \) denote the number of columns in \(G \) whose entry is \(i \), for \(i \in \{1, 2, \ldots, t\} \). There are, up to a sign, five possible types of codewords in \(C^\perp \) of weight 3. Since \(C \) does not contain zero columns, a codeword with a single 3 or -3 will not appear in \(C^\perp \). So only four types are considered here, each in a separate sub-subsection. We will count the number of codewords in \(C^\perp \) of each of the four types and then apply the count to \(C_1^\perp \) and \(C_2^\perp \).

3.1.1. A 1 and a -2

Let \(c \) be a codeword in \(C^\perp \) with a 1 and a -2. Let \([x]\) denote a column in \(G \) whose entry is \(x \). Suppose that 1 corresponds to column \([x]\) and -2 corresponds to column \([y]\) in the generator matrix, so that \(Gc^T = x - 2y \).

Since \(C \) has no zero columns, then \(1 \leq x, y \leq t \) and so \(-(2t - 1) \leq x - 2y \leq t - 2 \). This implies that the only way to have \(x - 2y \equiv 0 \mod p \) is to have \(x - 2y = 0 \). This forces \(x \) to be even. So if \(x = 2i \), then \(y = i \) and the number of ways that this happens is \(a_2a_i \). Therefore, the number of such codewords in \(C^\perp \) is

\[
\sum_{i=1}^{t/2} a_2a_i.
\]

Therefore, the count for \(C_1^\perp \), given that \(a_1 = 0 \) and \(a_i = t \) for all \(2 \leq i \leq t \), is:

\[
\sum_{i=1}^{t/2} a_2a_i = \sum_{i=2}^{t/2} i^2 = \frac{t^2(t - 2)}{2}.
\]

And, the count for \(C_2^\perp \), given that \(a_1 = 2(t - 1) \) and \(a_i = t - 2 \) for all \(2 \leq i \leq t \), is:

\[
\sum_{i=1}^{t/2} a_2a_i = 2(t - 1)(t - 2) + \sum_{i=2}^{t/2} (t - 2)^2 = 2(t - 1)(t - 2) + \left(\frac{t}{2} - 1 \right) (t - 2)^2
\]

\[
= \frac{(t - 2)}{2} \left(4(t - 1) + (t - 2)^2 \right) = \frac{t^2(t - 2)}{2}.
\]

3.1.2. A 1 and a 2

Let \(c \) be a codeword in \(C^\perp \) with a 1 and a 2. Suppose that 1 corresponds to column \([x]\) and 2 corresponds to column \([y]\) in the generator matrix, so that \(Gc^T = x + 2y \).

Since \(C \) has no zero columns, then \(1 \leq x, y \leq t \) and so \(-2t \leq x + 2y \leq 2t + 1 \). This implies that the only way to have \(x + 2y \equiv 0 \mod p \) is to have \(x + 2y = 2t + 1 \). This implies that \(x \) is an odd number. So if \(x = 2i + 1 \), then \(y = t - i \) and the number of ways that this happens is \(a_{2i+1}a_{t-i} \). Therefore, the number of such codewords in \(C^\perp \) is

\[
\sum_{i=0}^{(t-2)/2} a_{2i+1}a_{t-i}.
\]

Thus, the count for \(C_1^\perp \) is:

\[
\sum_{i=0}^{(t-2)/2} a_{2i+1}a_{t-i} = \sum_{i=1}^{(t-2)/2} t^2 = \frac{t^2(t - 2)}{2}.
\]

And, the count for \(C_2^\perp \) is:

\[
\sum_{i=0}^{(t-2)/2} a_{2i+1}a_{t-i} = 2(t - 1)(t - 2) + \sum_{i=1}^{(t-2)/2} (t - 2)^2 = \frac{t^2(t - 2)}{2}.
\]
3.1.3. A 1 and two \(-1\)'s

Let \(c\) be a codeword in \(C^\perp\) with a 1 and two \(-1\)'s. Suppose that 1 corresponds to column \([x]\) and the \(-1\)'s correspond to columns \([y]\) and \([z]\) in the generator matrix, so that \(Gc^T = x - y - z\). Since \(1 - 2t \leq x - y - z \leq t - 1\), then the only way to have \(x - y - z \equiv 0 \mod p\) is to have \(x - y - z = 0\) and so \(x = y + z\). Therefore, the number of such codewords in \(C^\perp\) is
\[
\sum_{i=1}^{t/2} a_{2i} \left(\sum_{j=1}^{i-1} a_j a_{2i-j} + \frac{a_i}{2} \right) + \sum_{i=1}^{(t-2)/2} a_{2i+1} \left(\sum_{j=1}^{i} a_j a_{2i+1-j} \right).
\]

Therefore, the count for \(C_1^\perp\) is:
\[
\frac{t^2}{2} \sum_{i=2}^{t/2} t \left(\sum_{j=2}^{i-1} t^2 + \frac{t(t-1)}{2} \right) + \frac{(t-2)/2}{i=1} t \left(\sum_{j=2}^{i} t^2 \right) = \frac{t^2}{2} \sum_{i=2}^{t/2} t \left(\frac{(i-2)t^2 + \frac{t(t-1)}{2}}{2} \right) + \frac{(t-2)/2}{i=1} t \left(\frac{t^2(i-1)}{4} \right)
\]

And, the count for \(C_2^\perp\) is:

First part:
\[
\frac{t^2}{2} \sum_{i=2}^{t/2} t \left(\sum_{j=2}^{i-1} t^2 + \frac{t(t-1)}{2} \right) = a_2 \left(\frac{a_1}{2} \right) + \sum_{i=2}^{t/2} a_{2i} \left(a_{1}a_{2i-1} + \sum_{j=2}^{i-1} a_j a_{2i-j} + \frac{a_i}{2} \right)
\]
\[
= (t-2) \left(\frac{2(t-2)(2t-3)}{2} \right) + \sum_{i=2}^{t/2} \left(2(t-1)(t-2)^2 + \sum_{j=2}^{i-1} (t-2)^2 + \frac{(t-2)^2(t-3)}{2} \right)
\]
\[
= \frac{t^2(t-2)(t^2-2)}{8}.
\]

Second part:
\[
\sum_{i=1}^{(t-2)/2} a_{2i+1} \left(a_1 a_{2i+1-1} + \sum_{j=2}^{i} a_j a_{2i+1-j} \right)
\]
\[
= \sum_{i=1}^{(t-2)/2} (t-2) \left(2(t-1)(t-2) + (t-2)^2(i-1) \right) = \frac{(t-2)^3(t+2)}{8}.
\]

Adding the two parts together, the total count for \(C_2^\perp\) for this type is:
\[
\frac{t^2(t-2)(t^2-2)}{8} + \frac{t(t-2)^3(t+2)}{8} = \frac{t(t-2)(t^3-2t^2-3t+4)}{4}.
\]

3.1.4. Three \(-1\)'s

Let \(c\) be a codeword in \(C^\perp\) with three \(-1\)'s. Suppose that the ones correspond to columns \([x]\), \([y]\) and \([z]\). Now since \(3 \leq x + y + z \leq 3t\), the only way for \(Gc^T\) to be 0 \mod \(p\) is when \(x + y + z = p\). Since \(3 \nmid p\), then \(x, y, z\) cannot all be equal. Therefore, we have two cases.

First we consider the case when two of \(x, y, z\) are the same. Assume that \(y = z\). Then \(x\) is odd, and when \(x = 2i + 1\), \(y = z = t - i\). Therefore, the number of such codewords in \(C^\perp\) is
\[
\sum_{i=0}^{(t-2)/2} a_{2i+1} \left(\frac{a_{t-i}}{2} \right).
\]
Thus, the count for C_1^+ is:

$$\sum_{i=1}^{(t-2)/2} \frac{t^2(t-1)}{2} = \frac{1}{4}t^2(t-1)(t-2).$$

And, the count for C_2^+ is:

$$2(t-1)\frac{(t-2)(t-3)}{2} + \sum_{i=1}^{(t-2)/2} \frac{(t-2)^2(t-3)}{2} = \frac{1}{4}t^2(t-2)(t-3).$$

Let M be the number of ways p can be written as a sum of three distinct integers between 1 and t. Notice that 1 will never appear in such a partition. Indeed, if a partition contains 1, then the sum of the other two parts is 2t, this means that the other two parts are each equal to t, and so the parts are not distinct. Therefore, this situation accounts for Mt^3 codewords in C_1^+ and $M(t-2)^3$ codewords in C_2^+. To find M, let $Q(n,k)$ be the number of ways to write n as a sum of k distinct positive integers. Then by [1, p. 116] and [4, p. 45], $Q(p,3) = \lfloor (p-3)^2/12 \rfloor$, where $\lfloor \rfloor$ is the nearest integer function. Since our range is from 1 to t, we need to subtract the partitions when $t+1, t+2, \ldots, p-2$ appear in the partition. But $p-i$ appears $Q(i,2)$ times, for $i = 2, \ldots, t$. By [1, p. 116], $Q(i,2) = \lfloor (i-1)/2 \rfloor$.

$$\sum_{i=2}^{t} Q(i,2) = \sum_{i=2}^{t} \left\lfloor \frac{i-1}{2} \right\rfloor.$$

Notice that $\lfloor k/2 \rfloor = (k/2) - (1/2)$ for positive odd k, and $\lfloor k/2 \rfloor = k/2$ for even k. Since the interval $1 \leq i-1 \leq t-1$ contains $t/2$ positive odd integers, then

$$\sum_{i=2}^{t} \left\lfloor \frac{i-1}{2} \right\rfloor = \sum_{i=2}^{t} \frac{i-1}{2} - \frac{t}{4} = \frac{t(t-1)}{4} - \frac{t}{4} = \frac{1}{4}t(t-2),$$

and

$$M = Q(p,3) - \sum_{i=2}^{t} Q(i,2) = \lfloor (p-3)^2/12 \rfloor - \frac{1}{4}t(t-2) = \lfloor (2t-2)^2/12 \rfloor - \frac{1}{4}t(t-2) = \lfloor (t-1)^2/3 \rfloor - \frac{1}{4}t(t-2).$$

Recall $\lfloor (t-1)^2/3 \rfloor$ is the nearest integer function. Since $(t-1)^2$ is an integer, then the possible values for $\lfloor (t-1)^2/3 \rfloor$ are $(t-1)^2/3$, $(t-1)^2 + 1/3$ or $(t-1)^2 - 1)/3$. This implies that the possible values for M are:

$$\frac{1}{12}(t^2 - 2t + 4), \quad \frac{1}{12}(t^2 - 2t + 8), \quad \text{or} \quad \frac{1}{12}t(t-2). \quad (3.1)$$

Recall that $A_3(C_i^+)$ is the number of codewords of weight 3 in C_i^+ for $i = 1, 2$. Remember, we need to double our count in each type to account for the negatives of our types. Therefore,

$$A_3(C_1^+) = 2 \left(2 \cdot \frac{(t-2)^2}{2} + \frac{t^2(t-2)(t^2 - 3t - 1)}{4} + \frac{t^2(t-1)(t-2)}{4} + Mt^3 \right)$$

$$= \frac{1}{2}t^2(t-2)(t^2 - 2t + 2) + 2Mt^3.$$
For $A_3(C^0_2)$, the count is
\[
A_3(C^0_2) = 2 \left(2 \cdot \frac{(t-2)t^2}{2} + \frac{t(t-2)(t^3 - t^2 - 3t + 4)}{4} + \frac{t^2(t-3)(t-2)}{4} + M(t-2)^3 \right) \\
= \frac{1}{2}t(t-2)(t+2)(t^2-2t+2) + 2M(t-2)^3.
\]

Therefore, $A_3(C^1_2) = A_3(C^2_2)$ if and only if
\[
0 = \frac{1}{2}t^2(t-2)(t^2-2t+2) - \frac{1}{2}t(t-2)(t+2)(t^2-2t+2) + 2Mt^3 - 2M(t-2)^3 \\
= -t(t-2)(t^2-2t+2) + M(12t^2 - 24t + 16).
\]

It follows that $A_3(C^1_2) = A_3(C^2_2)$ if and only if
\[
M = \frac{t(t-2)(t^2-2t+2)}{12t^2 - 24t + 16}.
\]

This expression clearly does not match any of the formulas for M from equation 3.1. Nonetheless, the above expression and the earlier formulas may yield the same value for M for certain values of t. The values of t on which the expression $((t^2 - 2t + 2)(t-2)/t)/(12t^2 - 24t + 16)$ agrees with the first two formulas in equation 3.1 are not integers. But, the expression $((t^2 - 2t + 2)(t-2)/t)/(12t^2 - 24t + 16)$ agrees with $t(t-2)/12$, the third formula from equation 3.1, when $t = 0$ and $t = 2$. Notice that $t = 2$ when $p = 5$. This means that $A_3(C^1_2)$ and $A_3(C^2_2)$ are in fact equal when $p = 5$, so that this construction does not provide a counterexample in the case $p = 5$. Otherwise, for $p \geq 13$, we indeed have $A_3(C^0_2) \neq A_3(C^1_2)$, and therefore $\text{lwe}_{C^0_2} \neq \text{lwe}_{C^1_2}$ for all $p \equiv 1 \mod 4, p \geq 13$.

3.2. Primes congruent to 3 modulo 4

In this subsection $p \equiv 3 \mod 4$. Then $t = (p-1)/2$ is an odd number. We will use the same setup from the previous subsection. In most of the cases, the only differences are the upper limits of the summations.

3.2.1. A_1 and $a = -2$

To have $x - 2y = 0, x$ must be even. So if $x = 2i$, then $y = i$, and the number of ways that this happens is $a_{2i}a_i$. Therefore, the number of such codewords in C^1_2 is
\[
\sum_{i=1}^{(t-1)/2} a_{2i}a_i.
\]

Therefore, the count for C^1_2, given that $a_1 = 0$ and $a_i = t$ for all $2 \leq i \leq t$, is:
\[
\sum_{i=1}^{(t-1)/2} a_{2i}a_i = \sum_{i=2}^{(t-1)/2} t^2 = t^2 \left(\frac{t-1}{2} - 1 \right) = \frac{t^2(t-3)}{2}.
\]

And, the count for C^2_2, given that $a_1 = 2(t-1)$ and $a_i = (t-2)$ for all $2 \leq i \leq t$, is:
\[
\sum_{i=1}^{(t-1)/2} a_{2i}a_i = 2(t-1)(t-2) + \sum_{i=2}^{(t-1)/2} (t-2)^2 = \frac{(t-2)(t^2 - t + 2)}{2}.
\]
3.2.2. A 1 and a 2

To have \(x + 2y = p = 2t + 1 \), \(x \) must be odd. So if \(x = 2i + 1 \), then \(y = t - i \), and the number of ways that this happens is \(a_{2i+1}a_{t-i} \). Therefore, the number of such codewords in \(C^\perp_1 \) is

\[
\sum_{i=0}^{(t-1)/2} a_{2i+1}a_{t-i}.
\]

Thus, the count for \(C^\perp_1 \) is:

\[
\sum_{i=0}^{(t-1)/2} a_{2i+1}a_{t-i} = \sum_{i=1}^{(t-1)/2} t^2 = \frac{t^2(t-1)}{2}.
\]

And, the count for \(C^\perp_2 \) is:

\[
\sum_{i=0}^{(t-1)/2} a_{2i+1}a_{t-i} = 2(t-1)(t-2) + \sum_{i=1}^{(t-1)/2} (t-2)^2 = \frac{(t-1)(t-2)(t+2)}{2}.
\]

3.2.3. A 1 and two \(-1\)'s

We need to solve \(x = y + z \). If \(x = 2i \) is even, then the possibilities for \(y \) and \(z \) are \(y = j \) and \(z = 2i - j \) for \(1 \leq j \leq i \). Similarly, if \(x = 2i + 1 \), then \(y = j \) and \(z = 2i + 1 - j \) for \(1 \leq j \leq i \). Therefore, the number of such codewords in \(C^\perp_1 \) is

\[
\sum_{i=1}^{(t-1)/2} \left(\begin{array}{c} (t-1)/2 \\ i-1 \\ \end{array} \right) a_{2i} \left(\sum_{j=1}^{i-1} a_ja_{2i-j} + \left(\begin{array}{c} a_i \\ 2 \\ \end{array} \right) \right) + \sum_{i=1}^{(t-1)/2} \left(\begin{array}{c} i \\ t \\ \end{array} \right) a_{2i+1} \left(\sum_{j=1}^{i} a_ja_{2i+1-j} \right).
\]

Therefore, the count for \(C^\perp_1 \) is:

\[
\sum_{i=1}^{(t-1)/2} t \left(\sum_{j=2}^{i-1} j^2 + \frac{t(t-1)}{2} \right) + \sum_{i=1}^{(t-1)/2} t \left(\sum_{j=2}^{i} j^2 \right) = \sum_{i=1}^{(t-1)/2} t (i-2)^2 + \frac{t(t-1)}{2} + \sum_{i=1}^{(t-1)/2} t (t^2(i-1)) = \frac{t^2(t-3)(t^2-2t-1)}{4}.
\]

And, the count for \(C^\perp_2 \) is:

First part:

\[
= a_2 \left(\begin{array}{c} (t-1)/2 \\ 2 \\ \end{array} \right) + \sum_{i=2}^{(t-1)/2} a_{2i} \left(a_1a_{2i-1} + \sum_{j=2}^{i-1} a_ja_{2i-j} + \left(\begin{array}{c} a_i \\ 2 \\ \end{array} \right) \right) = (t-2) \frac{(2t-2)(2t-3)}{2} + \sum_{i=2}^{(t-1)/2} \left(2(t-1)(t-2)^2 + \sum_{j=2}^{i-1} (t-2)^3 + \frac{(t-2)^2(t-3)}{2} \right) = \frac{(t-1)(t-2)(t^2 - t + 2)}{8}.
\]

Second part:

\[
\sum_{i=1}^{(t-1)/2} \left(\begin{array}{c} (t-1)/2 \\ i \\ \end{array} \right) (2t-1)(t-2) + (t-2)^2(i-1) = \frac{(t-1)(t-2)^2(t^2 + 3t - 2)}{8}.
\]
Adding the two parts together, the total count for C^1_z for this type is:

$$
\frac{(t-2)(t+2)(t-1)^3}{4}.
$$

3.2.4. Three 1’s

We consider the same two cases as in paragraph 3.1.4. First we consider the case when two of x, y and z are the same. Assume that $y = z$. Then x must be odd, and when $x = 2i + 1, y = z = t - i$. Therefore, the number of such codewords in C^1_z is

$$
\sum_{i=0}^{(t-1)/2} a_{2i+1}\binom{a_{t-1}}{2}.
$$

Thus, the count for C^1_z is:

$$
\frac{(t-1)/2}{2} t^2(t-1) = \frac{1}{4} t^2(t-1)^2.
$$

And, the count for C^2_z is:

$$
2(t-1)\frac{(t-2)(t-3)}{2} + \sum_{i=1}^{(t-1)/2} \frac{(t-2)^2(t-3)}{2} = \frac{1}{4} (t-1)(t-2)(t-3)(t+2).
$$

Recall M is the number of ways p can be written as a sum of three distinct integers between 1 and t. Notice that 1 will never appear in such a partition. This case accounts for Mt^3 codewords in C^1_z and $M(t-2)^3$ codewords in C^2_z.

We know that $M = Q(p, 3) - \sum_{i=2}^{t} Q(i, 2) = Q(p, 3) - \sum_{i=2}^{t}(i-1)/2$. Since $1 \leq i - 1 \leq t - 1$ and there are $(t-1)/2$ odd numbers in the interval $[1, t-1]$, then

$$
\sum_{i=2}^{t} \left| \frac{i-1}{2} \right| = \sum_{i=2}^{t} \frac{i-1}{2} - \frac{t-1}{4} = \frac{t(t-1)}{4} - \frac{t-1}{4} = \frac{(t-1)^2}{4}.
$$

Hence,

$$
M = \left[\frac{(t-1)^2}{3} \right] - \frac{1}{4} (t-1)^2.
$$

The possible values for $[(t-1)^2/3]$ are $(t-1)^2/3$, $(t-1)^2/3 + 1/3$ or $(t-1)^2 - 1)/3$. This implies that the possible values for M are:

$$
\frac{1}{12}(t-1)^2, \frac{1}{12}(t^2 - 2t + 5), \text{ or } \frac{1}{12}(t^2 - 2t - 3). \tag{3.2}
$$

Here are the total counts of codewords of weight 3 in C^1_z and C^2_z.

$$
A_3(C^1_z) = \frac{(t-3)^2}{2} + \frac{(t-1)^2}{2} + \frac{t^2(t-3)(t^2-2t-1)}{4} + \frac{t^2(t-1)^2}{4} + Mt^3.
$$

$$
A_3(C^2_z) = 2 \left(\frac{(t-2)(t^2-t+2)}{2} + \frac{(t-1)(t-2)(t+2)}{4} + \frac{(t-2)(t+2)(t-1)^3}{4} \right)
\frac{(t-1)(t-2)(t-3)(t+2)}{4} + M(t-2)^3.
$$

$$
= \frac{(t-2)(t^4-t^2+4)}{2} + 2M(t-2)^3.
$$
Therefore, $A_3(C_1^+) = A_3(C_2^+)$ if and only if

$$0 = \frac{t^2(t - 1)(t^2 - 3t + 4)}{2} - \frac{(t - 2)(t^4 - t^2 + 4)}{2} + 2Mt^3 - 2M(t - 2)^3$$

$$= -t^4 + 4t^3 - 3t^2 - 2t + 4 + M(12t^2 - 24t + 16).$$

It follows that $A_3(C_1^+) = A_3(C_2^+)$ if and only if

$$M = \frac{t^4 - 4t^3 + 3t^2 + 2t - 4}{12t^2 - 24t + 16}.$$

This expression clearly does not match any of the formulas for M from equation 3.2. Moreover, the only integers at which the expression $(t^4 - 4t^3 + 3t^2 + 2t - 4)/(12t^2 - 24t + 16)$ agrees with any of the formulas in equation 3.2 are $t = 0$ and $t = 2$. These are not possible values for t when $p \equiv 3 \mod 4$. Hence, for $p \geq 7$, we indeed have $A_3(C_1^+) \neq A_3(C_2^+)$, and therefore $\text{lwe}_{C_1^+} \neq \text{lwe}_{C_2^+}$ for all $p \equiv 3 \mod 4$, $p \geq 7$.

We summarize the results for primes $p \geq 7$.

Proposition 3.3. For each prime $p \geq 7$, there exist linear codes C_1 and C_2 over \mathbb{Z}_p with $\text{lwe}_{C_1} = \text{lwe}_{C_2}$ and $A_3(C_1^+) \neq A_3(C_2^+)$.

4. Propagation of examples and proof of the main theorem

We would like to say that if C_1 and C_2 give an example with $\text{lwe}_{C_1} = \text{lwe}_{C_2}$ and $\text{lwe}_{C_1^+} \neq \text{lwe}_{C_2^+}$ over \mathbb{Z}_m, then aC_1 and aC_2 provide a corresponding example over \mathbb{Z}_{am}, for any positive integer a. Although the previous statement is not true in that generality, a weaker version is true and is sufficient to cover all integers $m \geq 5$. We need the following construction.

Let C be a linear code over \mathbb{Z}_m. For any positive integer a, define aC to be the code over \mathbb{Z}_{am} given by

$$aC = \{(ac_1, \ldots, ac_n) \in \mathbb{Z}_{am}^n : (c_1, \ldots, c_n) \in C\}.$$

Lemma 4.1. Let C be a linear code of length n over \mathbb{Z}_m and a be a positive integer. Then the weight distribution of the code aC is given in terms of the weight distribution of C as follows.

$$A_q(aC) = \begin{cases} 0, & a \nmid q, \\ A_q(a,C), & a \mid q, \end{cases}$$

for all $0 \leq q \leq \lfloor am/2 \rfloor n$.

Proof. Let $c \in C$. Assume all entries of c satisfy $-m/2 < c_i < m/2$, for all i. This implies that $-am/2 < ac_i < am/2$ for all entries of $ac \in aC$. Therefore

$$L_{am}(ac) = \sum_{i=1}^{n} |ac_i| = a \sum_{i=1}^{n} |c_i| = aL_m(c).$$

Notice that the map $C \to aC$, with $c \mapsto ac$, is a bijection. Therefore the result follows.

Corollary 4.2. Let C_1 and C_2 be linear codes of length n over \mathbb{Z}_m and a be a positive integer. If $\text{lwe}_{C_1} = \text{lwe}_{C_2}$, then $\text{lwe}_{aC_1} = \text{lwe}_{aC_2}$.

The next result examines the count of low weight codewords in dual codes of the form $(aC)^\perp$.

Lemma 4.3. Let C be a linear code of length n over \mathbb{Z}_m. Suppose that a and b are integers with $1 \leq a \leq b$. Then $A_q((aC)^\perp) = A_q((bC)^\perp)$ for $q < am/2$. In particular, $A_q(C^+) = A_q((bC)^\perp)$ for $q < m/2$.

11
Proof. Recall that we view $\mathbb{Z}_{am} = \{i : -am/2 < i \leq am/2\}$, and similarly for \mathbb{Z}_{bm}. Notice that a vector y in \mathbb{Z}_{am}^n can then be thought of as a vector in \mathbb{Z}_{bm}^n with the same entries and the same Lee weight. Conversely, for $z \in \mathbb{Z}_{bm}^n$, under the hypothesis that $L(z) < am/2$, we can view z as a vector in \mathbb{Z}_{am}^n with the same entries and the same Lee weight. In other words, for $0 \leq q < am/2$, the sets $\{y \in \mathbb{Z}_{am}^n : L(y) = q\}$ and $\{z \in \mathbb{Z}_{bm}^n : L(z) = q\}$ are equal, if we ignore the modulus and think of the elements as just integer vectors.

Now let $0 \leq q < am/2$ and let y be such that $-am/2 < y_i < am/2$ with $\sum_{i=1}^n |y_i| = q$, i.e., $l_{am}(y) = l_{bm}(y) = q$. We then have the following list of equivalent statements:

- $y \in (a\mathcal{C})^\perp$
- $\sum_{i=1}^n y_i(ac_i) \equiv 0 \mod am$, for all $c \in \mathcal{C}$
- $am|\sum_{i=1}^n y_i(ac_i)$, for all $c \in \mathcal{C}$
- $m|\sum_{i=1}^n y_i(c)$, for all $c \in \mathcal{C}$
- $bm|\sum_{i=1}^n y_i(bc_i)$, for all $c \in \mathcal{C}$
- $y \in (b\mathcal{C})^\perp$

This shows that $A_q(a\mathcal{C})^\perp = A_q(b\mathcal{C})^\perp$. \hfill \Box

Corollary 4.4. Let \mathcal{C}_1 and \mathcal{C}_2 be linear codes of length n over \mathbb{Z}_m. Let b and q positive integers with $q < m/2$. If $A_q(\mathcal{C}_1^\perp) \neq A_q(\mathcal{C}_2^\perp)$, then $A_q((b\mathcal{C}_1)^\perp) \neq A_q((b\mathcal{C}_2)^\perp)$.

Proof of Theorem 1.4. Suppose that $m \geq 5$. We will consider cases based on minimal factors of m that are also greater than or equal to 5. For instance, if m is not divisible by any prime p, $p \geq 5$, then m is divisible only by powers of 2 and powers of 3, say $m = 2^r3^s$. The smallest such numbers 2^r3^s that are themselves greater than or equal to 5 are 6, 8 and 9, as seen in the following diagram.

![Diagram showing cases for m and q.](attachment:diagram.png)

Sections 2 and 3 provided examples of linear codes $\mathcal{C}_1, \mathcal{C}_2$ over \mathbb{Z}_m satisfying $lwe_{\mathcal{C}_1} = lwe_{\mathcal{C}_2}$ and $A_q(\mathcal{C}_1^\perp) \neq A_q(\mathcal{C}_2^\perp)$ for the cases $m = 5, 6, 8, 9$ and $m = p$ prime, $p \geq 7$. To extend these examples from \mathbb{Z}_m to \mathbb{Z}_{am} we need to verify that the numbers m and q satisfy the hypotheses of Corollary 4.4. We summarize the various cases in the following chart:

<table>
<thead>
<tr>
<th>m</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>p, $p \geq 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q : A_q(\mathcal{C}_1^\perp) \neq A_q(\mathcal{C}_2^\perp)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Since $q < m/2$ in all of these cases, Corollary 1.4 implies that the examples provided in Sections 2 and 3 yield examples with $lwe_{a\mathcal{C}_1} = lwe_{a\mathcal{C}_2}$ and $lwe_{a\mathcal{C}_1^\perp} \neq lwe_{a\mathcal{C}_2^\perp}$ over \mathbb{Z}_{am} for any positive integer a. Since any $m \geq 5$ is necessarily a multiple of $m = 5, 6, 8, 9$ or $m = p$ prime, $p \geq 7$, the result follows. \hfill \Box
5. Future work

It is natural to consider the same problem for other weights on \mathbb{Z}_m, specifically the Euclidean weight and the homogeneous weight. The Euclidean weight e is defined on \mathbb{Z}_m by $e(a) = l(a)^2$ for $a \in \mathbb{Z}_m$.

The Euclidean weight coincides with the Lee weight and the Hamming weight over \mathbb{Z}_2 and \mathbb{Z}_3, thus the MacWilliams identities hold for the Euclidean weight enumerator in these cases. The following example shows the failure of the MacWilliams identities for the Euclidean weight enumerator over \mathbb{Z}_4.

Example 5.1. Let $m = 4$. Let

$$
G_1 = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
1 & 1 & 0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & 1
\end{bmatrix},
$$

$$
G_2 = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 2 & 0
\end{bmatrix}.
$$

Then $\text{ewe}_{C_4^1}(X,Y) = \text{ewe}_{C_4^2}(X,Y) = X^{48} + 12X^{32}Y^{16} + 3X^{16}Y^{32}$ and $\text{ewe}_{C_4^1} \neq \text{ewe}_{C_4^2}$. In fact $A_1(C^1_4) \neq A_1(C^2_4)$; because of the zero column in G_2, there are codewords of Euclidean weight 1 in C^1_4 but not in C^2_4.

The homogeneous weight over \mathbb{Z}_m was defined by Constantinescu and Heise [2]. We will not give the general definition here; rather we simply state the values of the homogeneous weight for specific m as needed.

For $m = p$, a prime, the homogeneous weight on \mathbb{Z}_p is just a scaled version of the Hamming weight. For $m = 4$, the homogeneous weight equals the Lee weight. For $m = 4$, the homogeneous weight equals the Lee weight. In those cases, the MacWilliams identities hold.

Here are two examples where the MacWilliams identities fail for the homogeneous weight enumerator.

Example 5.2. Let $m = 6$. The homogeneous weight w has the following values

$$
\begin{array}{c|ccccccc}
a & 0 & 1 & 2 & 3 & 4 & 5 \\
w(a) & 0 & 1 & 3 & 4 & 3 & 1
\end{array}
$$

Set

$$
G_1 = [1 \ 1 \ 1], \quad G_2 = [1 \ 3 \ 3].
$$

Then $\text{howe}_{C_6^1}(X,Y) = \text{howe}_{C_6^2}(X,Y) = X^{12} + 2X^9Y^3 + 2X^3Y^9 + Y^{12}$, but $A_2(C^1_6) = 6$ and $A_2(C^2_6) = 4$.

Example 5.3. This example is due to the referee of [3, Example 5.6]. Let $m = 8$, and use the following values for w:

$$
\begin{array}{c|ccccccc}
a & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
w(a) & 0 & 1 & 1 & 1 & 2 & 1 & 1 & 1
\end{array}
$$

Set

$$
G_1 = [1 \ 1 \ 4], \quad G_2 = [2 \ 2 \ 4 \ 4 \ 0].
$$

Then $\text{howe}_{C_8^1}(X,Y) = \text{howe}_{C_8^2}(X,Y) = X^6 + 2X^4Y^2 + 5X^2Y^4$, but $A_2(C^1_8) = 7$ and $A_2(C^2_8) = 23$.

To our knowledge, the validity of the MacWilliams identities for the Euclidean weight enumerator or the homogeneous weight enumerator over \mathbb{Z}_m is still open in general. Except for the cases described above where the MacWilliams identities are known to hold, we expect the identities to fail.

Acknowledgements

The second author thanks Professor Hongwei Liu and the School of Mathematics and Statistics of Central China Normal University for their hospitality during a research visit in April and May of 2018. Some of the initial research for this paper was conducted during that visit.

