Foundational Results on Linear Codes over Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Centennial
Universidad Michoacana de San Nicolás de Hidalgo
Instituto de Física y Matemáticas
Morelia, Michoacán
March 7, 2018
3. Linear codes and their duals

- Linear codes
- Character modules
- Generating characters
- Frobenius rings
- Making identifications
Summary from last time

- For an additive code $C \subseteq A^n$, the annihilator $(\hat{A}^n : C)$ satisfied some good duality properties.
- $(\hat{A}^n : C) \subseteq \hat{A}^n$ is an additive code over \hat{A}.
- Double annihilator: $(A^n : (\hat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\hat{A}^n : C)| = |A^n|$.
- The MacWilliams identities hold.
Let R be a finite ring with 1 and A be a finite unital left R-module. (Unital: $1a = a$, all $a \in A$.)

All of yesterday’s discussion of characters, etc., applies to the additive group of A.

Extra information: the left R-module structure on A induces a right R-module structure on \hat{A}.

For $r \in R$ and $\varpi \in \hat{A}$, define $\varpi r \in \hat{A}$ by $(\varpi r)(a) = \varpi(ra)$, $a \in A$; $(\pi^r)(a) = \pi(ra)$.

If A is a right module, then \hat{A} is a left module: $(r\varpi)(a) = \varpi(ar)$; $(r^\pi)(a) = \pi(ar)$.
Suppose \(B \subseteq A \) is a left \(R \)-submodule.

Then the annihilator \((\hat{A} : B) \subseteq \hat{A}\) is a right \(R \)-submodule.

Indeed: if \(\varrho \in (\hat{A} : B) \) and \(r \in R \), then

\[
(\varrho r)(B) = \varrho(rB) \subseteq \varrho(B) = 0,
\]

because \(B \) is a left submodule.
Linear codes over modules

- A left **linear code** of length n over A is a left R-submodule $C \subseteq A^n$.
- Similarly, right linear codes are right submodules of a right module alphabet.
- For a left linear code $C \subseteq A^n$, then $(\hat{A}^n : C)$ is a right linear code over \hat{A}.
- The duality properties and the MacWilliams identities have exactly the same form.
Good duality properties

- For a left linear code $C \subseteq A^n$:
- $(\hat{A}^n : C) \subseteq \hat{A}^n$ is a right linear code.
- Double annihilator: $(A^n : (\hat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\hat{A}^n : C)| = |A^n|$.
- The MacWilliams identities hold.
How does this relate to classical dual codes?

- In classical coding theory, the dual code is the annihilator with respect to a dot product.
- Can we do that here?
- For the rest of today, we will (mostly) work in the ring alphabet case. That is, let $A = R$.
Making identifications

- As above, a left linear code \(C \subseteq R^n \) has annihilator \((\hat{R}^n : C) \subseteq \hat{R}^n \).
- We will aim to identify \(R \) and \(\hat{R} \) as modules.
- It will be enough to have \(\hat{R} \cong R \) as one-sided \(R \)-modules.
- We begin a long aside on when \(\hat{R} \cong R \) happens.
Generating characters

- When is \(\hat{R} \cong R \) as one-sided modules?
- Suppose \(\psi : R \rightarrow \hat{R} \) is an isomorphism of right \(R \)-modules.
- Then \(\varrho = \psi(1) \) generates \(\hat{R} \) as a right \(R \)-module.
- Indeed: any \(\varpi \in \hat{R} \) has the form \(\varpi = \psi(r) = \psi(1r) = \psi(1)r = \varrho r \).
- Call any generator \(\varrho \) a right \textbf{generating character} of \(R \).
Characterizing generating characters

Theorem

A character $\varrho \in \hat{R}$ is a right generating character if and only if $\ker \varrho$ contains no nonzero right ideal of R.

- Define $\psi : R \to \hat{R}$ by $\psi(r) = \varrho r$. When is ψ an isomorphism? (Injective is enough, as $|R| = |\hat{R}|$.)

- $\psi(r) = 0$ iff $(\varrho r)(R) = 0$ iff $\varrho(rR) = 0$ iff $rR \subseteq \ker \varrho$.

- Similar result for left generating characters.
Left/right symmetry

Theorem

A character $\varrho \in \hat{R}$ is a left generating character if and only if ϱ is a right generating character.

- Left implies right: Suppose $rR \subseteq \ker \varrho$. Then $\varrho(rs) = 0$ for all $s \in R$.
- Then $(s\varrho)(r) = 0$ for all $s \in R$. I.e., $\varpi(r) = 0$ for all $\varpi \in \hat{R}$, as ϱ left generates.
- Thus $r = 0$. (Uses “$|B| \cdot |(\hat{A} : B)| = |\hat{A}|$”, $B = \mathbb{Z}r$.)
A generalization for modules

- \(R \) finite ring with 1; \(A \) finite unital left \(R \)-module.
- An \(R \)-module is \textbf{cyclic} if it is generated by one element. Say \(M \) is generated by \(m \in M \). Then \(R \to M, r \mapsto rm \), is onto.

\textbf{Theorem}

The following are equivalent:

1. \(\hat{A} \) is a cyclic right \(R \)-module.
2. \(A \) injects into \(\hat{R} \): \(A \hookrightarrow \hat{R} \).
3. There exists \(\varrho \in \hat{A} \) such that \(\ker \varrho \) contains no nonzero left \(R \)-submodule.
Proof

- 1 ↔ 2. Contravariant exact functor: $0 \to A \to \hat{R}$ dualizes to $R \to \hat{A} \to 0$, and vice versa.
- Fix $\varrho \in \hat{A}$. Define $A \to \hat{R}$ by $a \mapsto (r \mapsto \varrho(ra))$.
- 2 ↔ 3: $a \in A$ is in the kernel of the map above iff $\varrho(Ra) = 0$ iff $Ra \subseteq \ker \varrho$.
- Call such a ϱ a generating character for A.
Other structures in modules

- We want to connect the existence of generating characters to other structures in modules.
- A nonzero left R-module S is simple if S has no nonzero proper R-submodules.
- The socle $\text{Soc}(A)$ of a left R-module A is the submodule generated by (i.e., the sum of) all the simple submodules of A.
Jacobson radical

- R finite ring with 1.
- The **Jacobson radical** $\text{Rad}(R)$ is the intersection of all maximal left ideals of R.
- $\text{Rad}(R)$ is a two-sided ideal.
- $R/\text{Rad}(R)$ is a semi-simple ring, and

$$R/\text{Rad}(R) \cong \bigoplus_{i=1}^{t} M_{k_i \times k_i}(\mathbb{F}_{q_i}).$$

- Artin-Wedderburn decomposition.
More on simple modules

- If S is simple, and $0 \neq s \in S$, then $S = Rs$.
- The annihilator $\text{ann}(s) = \{ r \in R : rs = 0 \}$ is a maximal left ideal of R; $S \cong R/\text{ann}(s)$.
- $\text{Rad}(R)$ annihilates simple modules: $\text{Rad}(R)S = 0$.
- Every simple module is a module over $R/\text{Rad}(R)$.
- $\text{Soc}(A)$ is a module over $R/\text{Rad}(R)$.
- Same idea for right modules: reverse sides.
Top-bottom duality

- R finite ring with 1; A finite left R-module.
- $A/\text{Rad}(R)A$ is the “top quotient” of A; it is a sum of simple modules.
- $\text{Soc}(\hat{A}) = (\hat{A} : \text{Rad}(R)A) \cong (A/\text{Rad}(R)A)\hat{\sim}$.
- \supseteq: $(A/\text{Rad}(R)A)\hat{\sim}$ is a sum of simple modules.
- \subseteq: because $\text{Soc}(\hat{A}) \text{Rad}(R) = 0$.

Additional characterization for rings

Theorem

For a finite ring R, the following are equivalent.

1. $\hat{R} \cong R$ as left R-modules.
2. $\hat{R} \cong R$ as right R-modules.
3. $\text{Soc}(R) \cong R/\text{Rad}(R)$ as left and as right R-modules. ($\text{Soc}(R)$ is cyclic.)

- Such a ring R is called a **Frobenius** ring.
Sketch of proof

- We already know 1 \leftrightarrow 2.
- Fact: if $R = M_{k \times k}(\mathbb{F}_q)$, then $\hat{R} \cong R$.
- Then general $(R/\text{Rad}(R)) \hat{\cong} R/\text{Rad}(R)$.
- So $\text{Soc}(\hat{R}) \cong (R/\text{Rad}(R)) \hat{\cong} R/\text{Rad}(R)$.
- 1, 2 \Rightarrow 3: If $\hat{R} \cong R$, then
 $\text{Soc}(R) \cong \text{Soc}(\hat{R}) \cong R/\text{Rad}(R)$.
Construction

- $M_{k \times k}(\mathbb{F}_q)$ has a generating character:
 \[\varrho(P) = \vartheta_q(\text{Tr } P), \quad P \in M_{k \times k}(\mathbb{F}_q). \]
- \(\text{Tr } P \) is the matrix trace of \(P \).
- If \(q = p^e \) and \(x \in \mathbb{F}_q \), then
 \[\vartheta_q(x) = (x + x^p + \cdots x^{p^{e-1}})/p \in \mathbb{Q}/\mathbb{Z}. \]
- \(\vartheta_q \) is a generating character of \(\mathbb{F}_q \).
Construction, continued

- The sum of the ϱ’s is a generating character of general $R/\text{Rad}(R)$.
- $3 \Rightarrow 1, 2$: $\text{Soc}(R) \cong R/\text{Rad}(R)$ has a generating character (still call it ϱ).
- $\hat{R} \to \text{Soc}(R) \hat{\to} 0$ is onto.
- Any lift of ϱ is a generating character of R.
Why does ϱ generate?

- Suppose $B \subseteq \ker \varrho$ is a left ideal of R.
- Then $\text{Soc}(B) = B \cap \text{Soc}(R) \subseteq \ker \varrho \cap \text{Soc}(R)$.
- But ϱ is a generating character of $\text{Soc}(R)$, so $\text{Soc}(B) = 0$.
- Thus $B = 0$; ϱ is a left generating character of R.
Similar characterization for modules

Theorem

The following are equivalent:

1. \(\hat{A} \) is a cyclic right \(R \)-module.
2. \(A \) injects into \(\hat{R} : A \hookrightarrow \hat{R} \).
3. There exists \(\varrho \in \hat{A} \) such that \(\ker \varrho \) contains no nonzero left \(R \)-submodule.
4. \(\text{Soc}(A) \subseteq A \) is a cyclic \(R \)-submodule.

▶ End of long aside.
More identifications

- R finite Frobenius ring with generating character ϱ.
- Dot product on R^n: $y \cdot x = \sum_{i=1}^{n} y_i x_i$.
- Define $\psi : R^n \rightarrow \hat{R}^n$, $x \mapsto \psi_x$:
 \[\psi_x(y) = \varrho(y \cdot x), \quad y \in R^n. \]
- Then ψ is an isomorphism of left R-modules.
- $\psi_{rx}(y) = \varrho(y \cdot rx) = \varrho(yr \cdot x) = \psi_x(yr) = (r\psi_x)(y)$.
Character annihilator vs. dot product

- Recall: $\psi_x(y) = \varrho(y \cdot x)$, $y \in R^n$.

- Additive subgroup $C \subseteq R^n$. Under ψ, $(\hat{R}^n : C)$ corresponds to $r_\varrho(C) = \{x \in R^n : \varrho(C \cdot x) = 0\}$.

- Set $r(C) = \{x \in R^n : C \cdot x = 0\}$.

- $r(C) \subseteq r_\varrho(C)$ in general

- $r(C) = r(RC) = r_\varrho(RC) \subseteq r_\varrho(C)$ in general.

- $r(C) = r_\varrho(C)$ when C is a left submodule, as $C \cdot x$ is a left ideal in ker ϱ.

MacWilliams identities: Hamming weight enumerator

For a left linear code $C \subseteq R^n$, R Frobenius:

$$\text{hwe}_C(X, Y) = \frac{1}{|r(C)|} \text{hwe}_{r(C)}(X + (|R| - 1)Y, X - Y).$$
What if R is not Frobenius?

- If R is not Frobenius, the size condition fails; i.e., there exists a left ideal I of R with $|I| \cdot |r(I)| < |R|$.
- The MacWilliams identities also fail: evaluation at $X = Y = 1$ yields $|C| \cdot |r(C)| = |R|^n$.