The Extension Theorem for Lee and Euclidean Weights

Jay A. Wood

Department of Mathematics
Western Michigan University
http://sites.google.com/a/wmich.edu/jaywood

Centennial
Universidad Michoacana de San Nicolás de Hidalgo
Instituto de Física y Matemáticas
Morelia, Michoacán
March 9, 2018
This is joint work with Sergii Dyshko and Philippe Langevin.
Let R be a finite commutative ring with 1.

A linear code of length n over R is a submodule $C \subseteq R^n$.

Classically, R was a finite field \mathbb{F}_q.

Our interest today will be $R = \mathbb{Z}/N\mathbb{Z}$, especially the case where $N = p^k$, p prime.
Presenting a linear code

- Linear codes are often presented via a **generator matrix** G of size $k \times n$ over R.
- The linear code is the submodule of R^n generated by the rows of G.
- The generator matrix defines a homomorphism $R^k \rightarrow R^n$ via $x \mapsto xG$. If this map has a kernel, we may instead write the map as $M = R/\ker \rightarrow R^n$.
- We will call M an **information module**.
Weights

- A **weight** w on R is any function $w : R \rightarrow \mathbb{C}$ with $w(0) = 0$. Extend to R^n by $w(\vec{x}) = \sum_{i=1}^{n} w(x_i)$.
Three important examples

- For any R, the **Hamming weight** is $h(0) = 0$ and $h(r) = 1$ for $r \neq 0$.
- For $R = \mathbb{Z}/N\mathbb{Z}$, the **Lee** and **Euclidean** weights are

 $$L(r) = \min\{r, N - r\},$$
 $$E(r) = \min\{r^2, (N - r)^2\},$$

 where $r \in R$ is represented by $r \in \{0, 1, \ldots, N - 1\}$.

Lee Weight

March 9, 2018
Weight-preserving maps

- What are the invertible homomorphisms $R^n \rightarrow R^n$ that preserve one of these weights?
- A monomial transformation $T : R^n \rightarrow R^n$ is determined by a permutation σ of $\{1, 2, \ldots, n\}$ and units u_1, \ldots, u_n of R. Define

 $$T(\vec{x}) = (u_1x_{\sigma(1)}, \ldots, u_nx_{\sigma(n)}).$$

- Hamming weight: all monomial transformations.
- Lee or Euclidean: need all $u_i = \pm 1$; ‘signed permutations’.
Extension problem

- If $C \subseteq R^n$ is a linear code and T is a monomial transformation or signed permutation, then the restriction of T to C is an isomorphism from C to $C' = T(C)$ that preserves the weight (an ‘isometry’).
- Is the converse true?
- Extension problem: determine conditions on R and the weight w so that every isometry $C \rightarrow R^n$ extends to an isometry $R^n \rightarrow R^n$.
- Say: ‘R and w have the extension property’ (EP).
Some of what is known

- Hamming weight has EP: over finite fields (MacWilliams, 1961–62); over finite Frobenius rings (W, 1999); only over Frobenius rings (W, 2008).
- Lee weight has EP over $\mathbb{Z}/N\mathbb{Z}$ when N is: 2^k, 3^k, prime $p = 2q + 1$, q prime (Langevin, W, 2000); prime $p = 4q + 1$, q prime (Barra, 2012); any prime (Dyskho, L, W, 2016); any prime power (L, W, 2016); any positive integer (D, 2017).
- Euclidean: primes (D, L, W), prime powers (L, W), any positive integer (D).
Symmetrized weight compositions

- The Lee and Euclidean weights are invariant under the action of $U = \{\pm 1\}$: $L(-x) = L(x)$ and $E(-x) = E(x)$.
- Denote the set of nonzero orbits of U on $R = \mathbb{Z}/N\mathbb{Z}$ by O. Orbit of r is $[r] = \{\pm r\}$.
- For $[r] \in O$ and $x \in R^n$, define

$$swc_{[r]}(x) = |\{i : x_i \in [r]\}|.$$
swc has EP

Theorem

Suppose $R = \mathbb{Z}/N\mathbb{Z}$ and $U = \{\pm 1\}$. If $f : C \to R^n$ preserves swc, i.e., $\text{swc}_{[r]}(f(x)) = \text{swc}_{[r]}(x)$ for all $x \in C$ and $[r] \in \mathcal{O}$, then f extends to a signed permutation.

- Finite field case: Goldberg (1980)
- Finite Frobenius rings: W (1997)
Proof

- For fixed $x \in C$, there exists a permutation σ_x and units $u_{i,x} \in U$ such that $f_i(x) = u_{i,x} x_{\sigma_x(i)}$.

- Special character on R: $\rho(r) = \exp(2\pi \sqrt{-1} r / N)$.

- Multiply by $u \in U$, plug into ρ, and sum:

$$
\sum_{i=1}^{n} \sum_{u \in U} \rho(uf_i(x)) = \sum_{i=1}^{n} \sum_{u \in U} \rho(uu_{i,x} x_{\sigma_x(i)})
$$

$$
= \sum_{i=1}^{n} \sum_{u \in U} \rho(u x_{\sigma_x(i)}) = \sum_{i=1}^{n} \sum_{u \in U} \rho(u x_i)
$$
Proof, continued

- Equation of characters: for all $x \in C$,

$$\sum_{i=1}^{n} \sum_{u \in U} \rho(uf_i(x)) = \sum_{j=1}^{n} \sum_{v \in U} \rho(vx_j)$$

- Linear independence of characters: for each i and $u = 1$ in the left, there exists $j = \sigma(i)$ and $v_i \in U$ on the right, with $\rho(f_i(x)) = \rho(v_i x_{\sigma(i)})$.

- ρ is injective: $f_i(x) = v_i x_{\sigma(i)}$. Signed permutation!
Expressing w in terms of swc

- Suppose weight w satisfies $w(-r) = w(r)$, $r \in R$.
- Then, for $x \in R^n$ and $[t] \in \mathcal{O}$:

$$w(x) = \sum_{[r] \in \mathcal{O}} w(r) \text{swc}_{[r]}(x)$$

$$w(tx) = \sum_{[r] \in \mathcal{O}} w(tr) \text{swc}_{[r]}(x)$$
Criterion

- Set $W_w = (w(tr))[t],[r]$, a $|O| \times |O|$ matrix.

Theorem (W, 1999)

If the matrix W_w is invertible, then w has EP.

- Use $w(tx) = \sum_{[r] \in O} w(tr) swc[r](x)$ to show that swc is preserved.
Factoring $\det W_w$

- When $N = p$ prime, $R = \mathbb{Z}/p\mathbb{Z}$ is a field, and \mathcal{O} is a cyclic group.
- Dedekind-Frobenius (1896): $\det W_w$ factors into linear expressions in w given by the Fourier transforms of w with respect to the characters of \mathcal{O} (known as ‘even Dirichlet characters mod p’).
- When $N = p^k$, p prime, there is a similar factorization in terms of even Dirichlet characters mod p^k and their conductors (W, 2000).
Fourier transforms

- From here on, assume \(N = p \), an odd prime. The case of \(N = p^k \) is similar, but more intricate.
- The factors of \(\text{det} W_w \) are \(\hat{w}(\chi) = \sum_{r \in \mathcal{O}} w(r)\chi(r) \), where \(\chi \) is a character of \(\mathcal{O} \) (homomorphism \(\chi : \mathcal{O} \to \mathbb{C}^\times \)).
- \(\mathcal{O} \leftrightarrow \{ j : 1 \leq j < p/2 \} : \hat{w}(\chi) = \sum_{j < p/2} w(j)\chi(j) \).
- If \(f(x) = w(2x) \), then \(\hat{f}(\chi) = \bar{\chi}(2)\hat{w}(\chi) \).
- \(\sum_{j < p/2} w(2j)\chi(j) = \sum_{j < p/2} w(j)\chi(2^{-1}j) = \sum_{j < p/2} w(j)\bar{\chi}(2)\chi(j) \).
Special feature of Lee weight

- Remember that $L(r) = \min\{r, N - r\}$.
- If $0 \leq r < p/4$, then $L(2r) = 2L(r)$.
- If $p/4 < r < p/2$, then $L(2r) = p - 2L(r)$.
- For any r, $0 \leq r < p/2$,

 \[
 (L(2r) - 2L(r))(L(2r) - p + 2L(r)) = 0.
 \]
Relation between Lee and Euclidean weights

- For any r, $0 \leq r < p/2$,
 \[(L(2r) - 2L(r))(L(2r) - p + 2L(r)) = 0.\]
- $L(2r)^2 - 4L(r)^2 = p(L(2r) - 2L(r))$
- $E(2r) - 4E(r) = p(L(2r) - 2L(r))$
- FT: $(\bar{\chi}(2) - 4)\hat{E}(\chi) = p(\bar{\chi}(2) - 2)\hat{L}(\chi)$.
- Thus: $\hat{E}(\chi) = 0$ if and only if $\hat{L}(\chi) = 0$.
Relation between determinants

- Suppose 2 has order r in O, then
 \[(2^r + 1)^{(p-1)/(2r)} \det W_E = p^{(p-1)/2} \det W_L.\]

- Take the product of
 \[(\bar{\chi}(2) - 4)\hat{E}(\chi) = p(\bar{\chi}(2) - 2)\hat{L}(\chi)\]
 over all χ.

- Make use of factorization
 \[t^r - 1 = \prod_{j=0}^{r-1} (t - \zeta^j),\]
 and homomorphism $\chi \mapsto \zeta = \bar{\chi}(2)$.

Lee Weight March 9, 2018 20 / 29
Dirichlet characters

- Given a character \(\chi \) of \(\mathbb{F}_p^\times \), set \(\chi(0) = 0 \) and extend \(\chi \) to be periodic of period \(p \): a Dirichlet character mod \(p \).

- The Dirichlet \(L \)-function associated to \(\chi \):
 \[
 L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.
 \]

- Converges absolutely for \(\Re(s) > 1 \).

- Functional equation allows analytic continuation to an entire function of \(s \) (\(\chi \neq 1 \)).
For $\chi \neq 1$, define $B_n(\chi)$ via:

$$
\sum_{a=1}^{p} \frac{\chi(a)te^{at}}{e^{pt} - 1} = \sum_{n=0}^{\infty} B_n(\chi) \frac{t^n}{n!}.
$$

- $B_1(\chi) = (1/p) \sum_{a=1}^{p} a\chi(a)$.
- $B_2(\chi) = (1/p) \sum_{a=1}^{p} (a^2 - ap)\chi(a)$.
Facts about Dirichlet L-functions

- For $n \geq 1$, $L(1 - n, \chi) = -B_n(\chi)/n$.
- For $n \geq 1$, if χ is even, $\chi \neq 1$, then $L(1 - n, \chi) = 0$ if and only if n is odd.
We want to show that $\det W_w \neq 0$ for $w = L$ or $w = E$.

To the contrary, assume $\det W_w = 0$, so that $\hat{w}(\chi) = 0$ for some even character $\chi \neq 1$.

Remember that $\hat{L}(\chi) = 0$ iff $\hat{E}(\chi) = 0$.

Calculate B_1 and B_2.

Contradict information about $L(1 - n, \chi) = 0$.
Preliminary calculation

- In all that follows, χ is even and $\chi \neq 1$.

$$2\hat{1}(\chi) = 2 \sum_{j < p/2} \chi(j) = \sum_{j=1}^{p} \chi(j) = 0.$$

- The sum of any nontrivial character over its group vanishes.
B_1 calculation

- $pB_1(\chi) = \sum_{j=1}^{p} j \chi(j)$.

- Split in two and re-index, using χ even:

\[
pB_1(\chi) = \sum_{j<p/2} j \chi(j) + \sum_{j<p/2} (p - j) \chi(j)
= \sum_{j<p/2} p \chi(j) = p \hat{1}(\chi) = 0.
\]
B_2 calculation

- $pB_2(\chi) = \sum_{j=1}^{p} (j^2 - jp)\chi(j) = \sum_{j=1}^{p} j^2\chi(j)$.
- Split in two, re-index, use $\hat{L}(\chi) = \hat{E}(\chi) = 0$:

\[
pB_2(\chi) = \sum_{j<p/2} j^2\chi(j) + \sum_{j<p/2} (p-j)^2\chi(j)
= p^2\hat{1}(\chi) - 2p\hat{L}(\chi) + 2\hat{E}(\chi) = 0
\]
Contradict \(L(-1, \chi) \)

- Under the hypothesis that \(\hat{L}(\chi) = \hat{E}(\chi) = 0 \) for even \(\chi \neq 1 \):

 \[L(-1, \chi) = L(1 - 2, \chi) = -B_2(\chi)/2 = 0. \]

- But, for even \(\chi \neq 1 \), \(L(1 - n, \chi) = 0 \) if and only if \(n \) is odd.

- Thus \(L \) and \(E \) have EP over \(\mathbb{Z}/p\mathbb{Z} \).
Thank you for the opportunity to speak to you.
Thank you for your kind attention.
I especially thank Mustapha Lahyane and the organizing committee for their warm hospitality.