Applications of Finite Frobenius Rings to Algebraic Coding Theory —
I. Two Theorems of MacWilliams over Finite Frobenius Rings

Jay A. Wood

Western Michigan University
http://homepages.wmich.edu/~jwood

Symposium on Ring and Representation Theory,
Okayama University, September 25, 2011
I am pleased to be visiting the city of Okayama, and I thank the symposium organizers, especially Professor Kunio Yamagata, for the invitation and for their hospitality.

I thank the Japan Society for the Promotion of Science for its financial support of the symposium.
For Your Amusement

Table: Mathematical Genealogy of Two Speakers

<table>
<thead>
<tr>
<th>Dan Zacharia</th>
<th>Jay Wood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maurice Auslander</td>
<td>Shoshichi Kobayashi</td>
</tr>
<tr>
<td>Robert Taylor</td>
<td>Carl Allendoerfer</td>
</tr>
<tr>
<td>JHC Whitehead</td>
<td>Tracy Thomas</td>
</tr>
<tr>
<td>Oswald Veblen</td>
<td></td>
</tr>
<tr>
<td>EH Moore</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Simeon Poisson</td>
<td></td>
</tr>
<tr>
<td>Pierre-Simon Laplace</td>
<td>(and JL Lagrange)</td>
</tr>
<tr>
<td>Jean Le Rond d’Alembert</td>
<td></td>
</tr>
</tbody>
</table>
The Coding Problem

- How to ensure the integrity of a message transmitted over a noisy channel?
- Cleverly add redundancy.
- Encode possible messages (information) as a string of elements in an alphabet.
- Transmit the string over the channel.
- Detect errors and decode.
Adding Algebraic Structure

- Assume the alphabet is a finite field \mathbb{F}.
- Assume the set of messages M is a finite dimensional vector space over F of dimension k.
- The encoding is a linear embedding $M \hookrightarrow \mathbb{F}^n$, for some n.
- The image is a linear code of length n.

JW (WMU)
Objectives for this Talk

- Some of the language of algebraic coding theory.
- Two theorems of MacWilliams valid over finite fields.
- Finite Frobenius rings and their character modules.
- Generalize the two theorems.
Definitions (a)

- Let R be a finite associative ring with 1.
- Let A be a finite unital left R-module; A will be the alphabet.
- A left linear code over A of length n is a left R-submodule $C \subset A^n$.
- Special case: when $A = R$ as a left module.
Definitions (b)

- For \(x = (x_1, \ldots, x_n) \in A^n \), the Hamming weight \(\text{wt}(x) \) equals the number of nonzero entries of \(x \).
- For a linear code \(C \subset A^n \), the Hamming weight enumerator is the polynomial

\[
W_C(X, Y) = \sum_{x \in C} X^{n-\text{wt}(x)} Y^{\text{wt}(x)}.
\]
Definitions (c)

- When $A = R$, define a *dot product* on R^n by
 \[x \cdot y = \sum_{i=1}^{n} x_i y_i, \]
 for $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in R^n$.

- When $A = R$, and $C \subset R^n$ is a left linear code, define the *right annihilator* $r(C)$ by
 \[r(C) = \{ y \in R^n : x \cdot y = 0, x \in C \}. \]
MacWilliams Identities (1962/63)

- Let $C \subset \mathbb{F}_q^n$ be a linear code over \mathbb{F}_q.
- The MacWilliams identities hold:

$$W_C(X, Y) = \frac{1}{|r(C)|} W_{r(C)}(X + (q - 1)Y, X - Y).$$
Florence Jessie MacWilliams

- 1917–1990
- 1962 doctoral dissertation under Andrew Gleason at Harvard. (Mackey, Stone, Ge. Birkhoff, EH Moore.)
- “Combinatorial Problems of Elementary Abelian Groups”
- Three sections:
 - Extension theorem on isometries
 - The MacWilliams identities
 - Coverings
A **monomial transformation** $T : R^n \rightarrow R^n$ has the form

$$T(x_1, \ldots, x_n) = (x_{\sigma(1)}u_1, \ldots, x_{\sigma(n)}u_n),$$

where σ is a permutation of $\{1, \ldots, n\}$ and u_1, \ldots, u_n are units of R.

A monomial transformation preserves Hamming weight: $\text{wt}(T(x)) = \text{wt}(x)$, $x \in R^n$.
MacWilliams Extension Theorem
(1961/62)

- Assume $R = \mathbb{F}$, a finite field.
- Assume $C_1, C_2 \subset \mathbb{F}^n$ are linear codes.
- If $f : C_1 \rightarrow C_2$ is a linear isomorphism that preserves Hamming weight, then f extends to a monomial transformation of \mathbb{F}^n.
Generalizing the Theorems of MacWilliams

- When $A = R$, are the MacWilliams identities and the MacWilliams extension theorem still valid?
- Yes, if R is a finite Frobenius ring.
- Why Frobenius?
- There are character-theoretic proofs over finite fields that use the crucial property $\hat{\mathbb{F}} \cong \mathbb{F}$.
- Frobenius rings satisfy $\hat{R} \cong R$, and the same proofs will work.
Characters

- Let \((G, +)\) be a finite abelian group.
- A *character* \(\pi\) of \(G\) is a group homomorphism \(\pi : (G, +) \to (\mathbb{C}^\times, \times)\), the nonzero complexes.
- The set \(\hat{G}\) of all characters of \(G\) is itself a finite abelian group called the *character group*.
- \(|\hat{G}| = |G|\).
- As elements of the vector space of all functions from \(G\) to \(\mathbb{C}\), the characters are linearly independent.
- If \(M\) is a finite left \(R\)-module, then \(\hat{M}\) is a right \(R\)-module.
Two Useful Formulas

\[\sum_{x \in G} \pi(x) = \begin{cases} |G|, & \pi = 1, \\ 0, & \pi \neq 1. \end{cases} \]

\[\sum_{\pi \in \hat{G}} \pi(x) = \begin{cases} |G|, & x = 0, \\ 0, & x \neq 0. \end{cases} \]
Finite Frobenius Rings

- Finite ring R with 1.
- The (Jacobson) radical $\text{Rad}(R)$ of R is the intersection of all maximal left ideals of R; $\text{Rad}(R)$ is a two-sided ideal of R.
- The (left/right) socle $\text{Soc}(R)$ of R is the ideal of R generated by all the simple left/right ideals of R.
- R is Frobenius if $R / \text{Rad}(R) \cong \text{Soc}(R)$ as one-sided modules (both left and right).
Two Useful Theorems About Finite Frobenius Rings

- (Honold, 2001) $R / \text{Rad}(R) \cong \text{Soc}(R R)$ as left modules iff $R / \text{Rad}(R) \cong \text{Soc}(R_R)$ as right modules.
- R is Frobenius iff $R \cong \hat{R}$ as left modules iff $R \cong \hat{R}$ as right modules (1999).
- Corollary: R is Frobenius iff there exists a character π of R such that $\ker \pi$ contains no nonzero left (right) ideal of R. This π is a generating character.
Fourier Transform

- Given a function $f : G \rightarrow V$, with V a complex vector space, its Fourier transform is a function $\hat{f} : \hat{G} \rightarrow V$ defined by

$$\hat{f}(\pi) = \sum_{x \in G} \pi(x)f(x), \quad \pi \in \hat{G}.$$

- Fourier inversion:

$$f(x) = \frac{1}{|G|} \sum_{\pi \in \hat{G}} \pi(-x)\hat{f}(\pi), \quad x \in G.$$
Poisson Summation Formula

- For a subgroup \(H \subset G \), define its annihilator \((\hat{G} : H) = \{ \pi \in \hat{G} : \pi(H) = 1 \} \).
- \(|(\hat{G} : H)| = |G|/|H| \).
- For a subgroup \(H \subset G \) and any \(a \in G \),
 \[
 \sum_{h \in H} f(a + h) = \frac{1}{|(\hat{G} : H)|} \sum_{\pi \in (\hat{G} : H)} \pi(-a)\hat{f}(\pi).
 \]
- In particular, for a subgroup \(H \subset G \),
 \[
 \sum_{h \in H} f(h) = \frac{1}{|(\hat{G} : H)|} \sum_{\pi \in (\hat{G} : H)} \hat{f}(\pi).
 \]
MacWilliams Identities over Finite Frobenius Rings

Theorem (1999)

Let R be a finite Frobenius ring. If $C \subset R^n$ is a left linear code, then the MacWilliams identities hold:

$$W_C(X, Y) = \frac{1}{|r(C)|} W_{r(C)}(X + (|R| - 1)Y, X - Y).$$
Proof of the MacWilliams Identities (a)

- The proof follows a proof due to Gleason (1970).
- Let R be Frobenius with generating character ρ.
- Let $G = R^n$, an abelian group under addition.
- Let $H = C$, a left linear code.
- Let $V = \mathbb{C}[X, Y]$, a complex vector space.
- Let $f : G \rightarrow V$ be

$$f(x) = X^{n - \text{wt}(x)} Y^{\text{wt}(x)}.$$
Proof of the MacWilliams Identities (b)

By Frobenius hypothesis, every character of $G = R^n$ has the form π_a, for some $a \in R^n$, with

$$\pi_a(x) = \rho(x \cdot a), \quad x \in R^n.$$

$\pi_a \in (\hat{G} : H)$ if and only if $a \in r(C)$.

$| (\hat{G} : H) | = | r(C) |$.
Proof of the MacWilliams Identities (c)

- For \(f(x) = X^{n - \text{wt}(x)} Y^{\text{wt}(x)} \),

\[
\hat{f}(\pi_a) = (X + (|R| - 1)Y)^{n - \text{wt}(a)}(X - Y)^{\text{wt}(a)}.
\]

- This requires some manipulations and use of \(\sum \pi(x) \) formulas. (Next slide.)

- Recognize \(\hat{f}(\pi_a) \) as summand of \(W_r(C)(X + (|R| - 1)Y, X - Y) \).
Idea of Manipulation

- Let \(n = 1 \), \(f(x) = X^{1-\text{wt}(x)} Y^{\text{wt}(x)} \).

\[
\hat{f}(\pi_a) = \sum_{x \in R} \pi_a(x) X^{1-\text{wt}(x)} Y^{\text{wt}(x)}
\]

\[
= X + \sum_{x \neq 0} \pi_a(x) Y
\]

\[
= \begin{cases}
X + (|R| - 1) Y, & a = 0, \\
X - Y, & a \neq 0,
\end{cases}
\]

\[
= (X + (|R| - 1) Y)^{1-\text{wt}(a)} (X - Y)^{\text{wt}(a)}
\]
MacWilliams Extension Theorem over Finite Frobenius Rings

Theorem (1999)

Let R be a finite Frobenius ring, and suppose $C_1, C_2 \subset R^n$ are left linear codes. If $f : C_1 \rightarrow C_2$ is an R-linear isomorphism that preserves Hamming weight, then f extends to a monomial transformation of R^n.
The proof follows a proof of Ward and Wood in the finite field case (1996).

View C_i as the image of $\lambda_i : M \rightarrow R^n$, with $\lambda_i = (\lambda_{i,1}, \ldots, \lambda_{i,n})$ and $\lambda_2 = f \circ \lambda_1$.

Using character sums, express Hamming weight as:

$$\text{wt}(\lambda_i(x)) = n - \sum_{j=1}^{n} \frac{1}{|R|} \sum_{\pi \in \hat{R}} \pi(\lambda_{i,j}(x)), x \in M.$$
Because f preserves Hamming weight, we get

$$
\sum_{j=1}^{n} \sum_{\pi \in \hat{R}} \pi(\lambda_{1,j}(x)) = \sum_{k=1}^{n} \sum_{\psi \in \hat{R}} \psi(\lambda_{2,k}(x)), x \in M.
$$

In a Frobenius ring, there is a generating character ρ. Every character of R has the form $a\rho$, $a \in R$.

$$(a\rho)(r) := \rho(ra), r \in R.$$
Re-write weight-preservation equation as

$$\sum_{j=1}^{n} \sum_{a \in R} (a \rho)(\lambda_{1,j}(x)) = \sum_{k=1}^{n} \sum_{b \in R} (b \rho)(\lambda_{2,k}(x)), x \in M.$$

Or as

$$\sum_{j=1}^{n} \sum_{a \in R} \rho(\lambda_{1,j}(x)a) = \sum_{k=1}^{n} \sum_{b \in R} \rho(\lambda_{2,k}(x)b), x \in M.$$
The last equation is an equation of characters on M. Characters are linearly independent, so one can match up terms (carefully).

A technical argument involving a preordering given by divisibility in R shows how to match up terms with units as multipliers.

This produces a permutation σ and units u_i in R such that $\lambda_{2,k} = \lambda_{1,\sigma(k)} u_k$, as desired.