The Extension Theorem for Lee Weight

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood/

AMS meeting
University of St. Thomas
Minneapolis, MN
October 29, 2016
Co-authors

- This is a report on joint work with Sergey Dyshko and Philippe Langevin of the University of Toulon.
Monomial transformations

- Suppose \mathbb{F}_q is a finite field.
- A **monomial transformation** $T : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^n$ is determined by a permutation τ of $\{1, 2, \ldots, n\}$ and non-zero scalars (units) $u_i \in \mathbb{F}_q^\times$, $i = 1, 2, \ldots, n$:

 $$T(x_1, x_2, \ldots, x_n) = (u_1 x_{\tau(1)}, \ldots, u_n x_{\tau(n)}),$$

 for all $x = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_q^n$.
- If the u_i belong to a subgroup $G \subseteq \mathbb{F}_q^n$, we say that T is a G-**monomial transformation**.
Monomial transformations are isometries

- A monomial transformation preserves the Hamming weight \(wt \):

\[
wt(T(x)) = wt(x), \quad x \in \mathbb{F}_q^n.
\]
The extension theorem of MacWilliams

- If $C \subseteq \mathbb{F}_q^n$ is a linear code and $f : C \rightarrow \mathbb{F}_q^n$ is a linear transformation that preserves the Hamming weight, then f extends to a monomial transformation T of \mathbb{F}_q^n. I.e., $f = T|_C$.
- This result was part of the 1962 doctoral dissertation of MacWilliams (as were the MacWilliams identities).
Lee weight on $\mathbb{Z}/N\mathbb{Z}$

- Represent elements of $\mathbb{Z}/N\mathbb{Z}$ by integers in $\{0, 1, \ldots, N - 1\}$.
- The Lee weight w_L on $\mathbb{Z}/N\mathbb{Z}$ is

$$w_L(a) = \begin{cases} a, & 0 \leq a \leq \lfloor N/2 \rfloor, \\ N - a, & \lfloor N/2 \rfloor < a < N. \end{cases}$$

- The Euclidean weight w_E equals w_L^2.
Role of symmetry

- The Lee and Euclidean weights satisfy $w(-a) = w(a)$ for all $a \in \mathbb{Z}/N\mathbb{Z}$.
- The symmetry group of these weights is $G = \{\pm 1\}$.
- A G-monomial transformation (a “signed permutation”) of $(\mathbb{Z}/N\mathbb{Z})^n$ preserves the Lee and Euclidean weights.
- Is the extension theorem true for w_L and w_E?
Progression of results

- Numerical verification for \(N \leq 2048 \).
- (LW, dates from 2000) True for \(N = 2^k \), \(N = 3^k \) and \(N = p = 2q + 1 \), \(p, q \) primes.
- (Barra, 2012) True for \(N = p = 4q + 1 \), \(p, q \) primes.
- (DLW, 2016) True for \(N = p \), \(p \) prime.
- (LW, 2016) True for \(N = p^k \), \(p \) prime.
- (D, last month) True for any \(N \).
Outline of plan of attack

- Extension theorem for symmetrized weight compositions.
- Invertibility of a matrix W.
- Factoring $\det(W)$.
- Showing that the factors of $\det(W)$ are nonzero.
Matrix W

- Let w be the Lee or Euclidean weight on $\mathbb{Z}/N\mathbb{Z}$.
- Let $r = \lfloor N/2 \rfloor$.
- Form an $r \times r$ matrix W with i, j entry equal to $w(ij)$, the value of w at the product ij in $\mathbb{Z}/N\mathbb{Z}$.
- If W is invertible (over \mathbb{Q}), then the extension theorem is true.
 - Fine print: Invertibility of W implies that any w-isometry preserves the symmetrized weight composition determined by $G = \{\pm 1\}$. Then apply the extension theorem for symmetrized weight compositions.
Factoring $\det(W)$

- When $N = p$, a prime, the matrix W represents, up to a permutation of columns, the regular representation in the group ring of $\mathbb{F}_p^\times / \{\pm 1\}$.

- (Dedekind-Frobenius) $\det(W)$ factors into a product of linear expressions, which are the Fourier coefficients of w with respect to the characters of $\mathbb{F}_p^\times / \{\pm 1\}$, i.e., of even multiplicative characters mod p.

- A generalization of this works for $N = p^k$, p prime.
A quadratic relation

- For Lee weight w_L and $a \in \mathbb{F}_p$, what is $w_L(2a)$?

$$w_L(2a) = \begin{cases}
2w_L(a), & 0 \leq a < p/4, \\
p - 2w_L(a), & p/4 < a < p/2.
\end{cases}$$

- For any a, $0 \leq a < p/2$,

$$(w_L(2a) - 2w_L(a))(w_L(2a) - p + 2w_L(a)) = 0;$$

$$w_E(2a) - 4w_E(a) = p(w_L(2a) - 2w_L(a)).$$
Let χ be an even character mod p. Then the Fourier transform with respect to χ of the quadratic relation

$$w_E(2a) - 4w_E(a) = p(w_L(2a) - 2w_L(a))$$

yields

$$(\overline{\chi}(2) - 4)\hat{w}_E(\chi) = p(\overline{\chi}(2) - 2)\hat{w}_L(\chi).$$

Thus: $\hat{w}_L(\chi) = 0$ if and only if $\hat{w}_E(\chi) = 0$.
Generalized Bernoulli numbers

- Given a character χ mod p, the first two generalized Bernoulli numbers are

\[
B_1(\chi) = \frac{1}{p} \sum_{k=1}^{p} k \chi(k),
\]

\[
B_2(\chi) = \frac{1}{2p} \sum_{k=1}^{p} (k^2 - pk) \chi(k).
\]
If \(\det(W) = 0 \), then...

- If \(\det(W) = 0 \) (for either \(w_L \) or \(w_E \)), then some Fourier coefficient \(\hat{w}(\chi) = 0 \), with \(\chi \) a non-trivial even character mod \(p \).
- Then both \(\hat{w}_L(\chi) = 0 \) and \(\hat{w}_E(\chi) = 0 \).
- One then computes that \(B_1(\chi) = 0 \) and \(B_2(\chi) = 0 \).
If \(B_1(\chi) = B_2(\chi) = 0 \), then . . .

- **Dirichlet L-function of \(\chi \):**
 \[
 L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.
 \]

- **Fact:** \(L(-1, \chi) = -\frac{B_2(\chi)}{2} \).
- **Fact:** for a non-trivial even character \(\chi \) and integers \(n \geq 1 \), \(L(1 - n, \chi) = 0 \) if and only if \(n \) is odd.
- **Let \(n = 2 \):**
 \[
 0 \neq L(1 - 2, \chi) = L(-1, \chi) = -\frac{B_2(\chi)}{2} = 0,
 \]
 contradiction!
Other cases

- A variant of the L-function argument works when $N = p^k$, p prime.
- Dyshko’s proof for general N shows that $\det(W) \neq 0$ by showing that a related matrix is diagonally dominant with positive diagonal terms.