Linear Codes over Finite Rings and Modules

Jay A. Wood

Department of Mathematics
Western Michigan University
http://homepages.wmich.edu/~jwood

Central China Normal University
Wuhan, Hubei
May 7, 2018
5. Self-duality for linear codes over modules

- Classical examples
- Invariant polynomials
- Gleason’s theorem
- Anti-isomorphisms
- Good duality from characters
- Alphabets with extra structure
- Generalization of Gleason’s theorem
Self-duality for linear codes over modules

Classical setting

- Let $R = \mathbb{F}_q$ and consider linear codes $C \subseteq \mathbb{F}_q^n$.
- Equip \mathbb{F}_q^n with the standard dot product:
 $$x \cdot y = \sum_{i=1}^{n} x_i y_i, \quad x, y \in \mathbb{F}_q^n.$$
- Could use an hermitian inner product instead.
- The dual code is $C^\perp = \{y \in \mathbb{F}_q^n : C \cdot y = 0\}$.

JW Codes May 7, 2018 3 / 29
Self-dual codes

- A linear code is **self-orthogonal** if $C \subseteq C^\perp$.
- A linear code is **self-dual** if $C = C^\perp$.
- If $\dim C = k$, then $\dim C^\perp = n - k$. (Analogous to “$|B| \cdot |(\hat{A} : B)| = |A|$”.)
- If $C \subseteq \mathbb{F}_q^n$ is self-dual, then $n = 2k$ is even.
Binary case

- Let $q = 2$, the binary case.
- For $x \in \mathbb{F}_2^n$, if $x \cdot x = 0$, then $\text{wt}(x)$ is even. (For $q = 3$, $\text{wt}(x) \equiv 0 \mod 3$. Not true in general.)
- If $C \subseteq \mathbb{F}_2^n$ is self-orthogonal, then every codeword in C has even weight.
- Extra: a binary self-orthogonal code in which every codeword has weight divisible by 4 is **doubly-even** (**singly-even** otherwise).
A binary example

- The codes generated by G_2, G_8 are singly-even, self-dual:

\[
G_2 = [1 \ 1], \quad G_8 = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}.
\]

- $\text{hwe}_{G_2} = X^2 + Y^2$. Call this $S = \text{hwe}_{G_2}$.
- $\text{hwe}_{G_8} = X^8 + 4X^6Y^2 + 6X^4Y^4 + 4X^2Y^6 + Y^8 = (X^2 + Y^2)^4$.
Another binary example

- The code generated by E_8 is doubly-even, self-dual.

$$E_8 = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}$$

- $\text{hwe}_{E_8} = X^8 + 14X^4Y^4 + Y^8$. Call it $T = \text{hwe}_{E_8}$.
And another

- Take successive shifts of this vector until there is a 1 in position 23. Finish with a row of 1s:

\[G_{24} = \begin{bmatrix}
11111001001010000000000000 \\
01111100100101010000000000 \\
0011111001001010010000000000 \\
\vdots \\
000000000111110010010101010 \\
1111111111111111111111111111
\end{bmatrix} \]
And another, continued

- The code generated by G_{24} is doubly-even, self-dual.
- Called the **extended Golay code**.
- Dates from 1949.
- \[\text{hwe}_{G_{24}} = X^{24} + 759X^{16}Y^8 + 2576X^{12}Y^{12} + 759X^8Y^{16} + Y^{24}. \]
MacWilliams identities

- Recall the MacWilliams identities over \mathbb{F}_q for the Hamming weight enumerator:

$$hwe_C(X, Y) = \frac{1}{|C^\perp|} \ hwe_{C^\perp}(X + (q - 1)Y, X - Y).$$

- Over \mathbb{F}_2:

$$hwe_C(X, Y) = \frac{1}{|C^\perp|} \ hwe_{C^\perp}(X + Y, X - Y).$$
Binary self-dual case

When the code C is self-dual, C appears on both sides of the MacWilliams identities:

$$hwe_C(X, Y) = \frac{1}{|C|} hwe_C(X + Y, X - Y).$$

Length is $n = 2k$. $hwe_C(X, Y)$ is a homogeneous polynomial of degree n, so

$$hwe_C(X, Y) = hwe_C\left(\frac{X + Y}{\sqrt{2}}, \frac{X - Y}{\sqrt{2}}\right).$$
Invariance properties

- The group $\text{GL}(2, \mathbb{C})$ acts on $\mathbb{C}[X, Y]$ by linear substitution:

$$f(X, Y) \begin{bmatrix} a & b \\ c & d \end{bmatrix} = f(aX + cY, bX + dY).$$

- For binary self-dual C, hwe_C is invariant under

$$M = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}.$$
More invariance properties

- In addition, singly-even and doubly-even are invariant under, respectively \((i = \sqrt{-1})\):

\[
W_s = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad W_d = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}.
\]

- Define two subgroups of GL(2, \(\mathbb{C}\)):
 \(G_s = \langle M, W_s \rangle\) and \(G_d = \langle M, W_d \rangle\).

- For singly-even \(C\), \(hwe_C \in \mathbb{C}[X, Y]^{G_s}\).
- For doubly-even \(C\), \(hwe_C \in \mathbb{C}[X, Y]^{G_d}\).
Gleason’s theorem (1970)

- The rings of invariant polynomials are generated by the Hamming weight enumerators of certain codes.
- $\mathbb{C}[X, Y]^{G_s} = \mathbb{C}[\text{hwe}_{G_2}, \text{hwe}_{E_8}] = \mathbb{C}[S, T]$
- $\mathbb{C}[X, Y]^{G_d} = \mathbb{C}[\text{hwe}_{E_8}, \text{hwe}_{G_{24}}]$
- Corollary: doubly-even self-dual codes occur only in dimensions divisible by 8.
- $\text{hwe}_{G_{24}} = T^3 + \frac{21}{8}(2S^8T - S^4T^2 - S^{12})$.
- There are versions when $q = 3$ or $q = 4$ (with hermitian inner product).
Setting for the rest of this lecture

- Finite ring R, alphabet A, a left R-module.
- A left linear code is a left R-submodule $C \subseteq A^n$.
- How to define self-dual codes in this context?
- We will explain the approach of “Self-dual codes and invariant theory” by Nebe, Rains and Sloane, 2006.
Anti-isomorphisms

- Let R be a finite ring with 1.
- An **anti-isomorphism** of R is a map $\varepsilon : R \to R$ that is an isomorphism of the additive group of R and satisfies $\varepsilon(rs) = \varepsilon(s)\varepsilon(r)$ for all $r, s \in R$.
- An anti-isomorphism ε is an **involution** if $\varepsilon^2 = \text{id}_R$.
- If R is commutative, then id_R is an anti-isomorphism.
Examples

- Let S be a ring with anti-isomorphism ϵ.
- For any finite group G, the group ring $R = S[G]$ has anti-isomorphism ϵ:

$$
\epsilon\left(\sum_{g \in G} c_g g \right) = \sum_{g \in G} \epsilon(c_g) g^{-1}.
$$

- Matrix ring $R = M_{k \times k}(S)$, using the transpose:

$$
\epsilon(P) = (\epsilon(P))^T, \quad P \in R.
$$

Apply ϵ to each entry of P.
Swapping sides

- An anti-isomorphism ε on R allows one to regard left modules as right modules, and vice versa.
- If M is a left R-module, define $\varepsilon(M)$ to be same abelian group as M, but equipped with right scalar multiplication defined by

 $$xr = \varepsilon(r)x, \quad x \in M, r \in R,$$

 where $\varepsilon(r)x$ is the left scalar multiplication of the module M.
- Similar definition for right module to left.
Character-theoretic duality

- Recall from earlier: if $C \subseteq A^n$ is a left R-linear code, then $(\hat{A}^n : C) \subseteq \hat{A}^n$ is a right R-linear code.
- Double annihilator: $(A^n : (\hat{A}^n : C)) = C$.
- Size: $|C| \cdot |(\hat{A}^n : C)| = |A^n|$.
- The MacWilliams identities hold (cwe and hwe).
Alphabets with $\hat{A} \cong \varepsilon(A)$

- Starting with a left linear code $C \subseteq A^n$, a good candidate for a dual code is the right linear code $(\hat{A}^n : C) \subseteq \hat{A}^n$.
- So, assume the existence of an isomorphism $\psi : \varepsilon(A) \rightarrow \hat{A}$ of right R-modules.
- Define the **dual code** of a left linear code $C \subseteq A^n$ as
 \[
 C^\perp = \psi^{-1}(\hat{A}^n : C).
 \]
- Can use the same definition for an additive code $C \subseteq A^n$.
Interpret in terms of bi-additive form

- Use the additive form of characters: \(\hat{A} = \text{Hom}_\mathbb{Z}(A, \mathbb{Q}/\mathbb{Z}) \).
- Define \(\beta : A \times A \to \mathbb{Q}/\mathbb{Z} \) by \(\beta(a, b) = \psi(b)(a) \), for \(a, b \in A \). Extend additively to \(A^n \times A^n \). Then:
 - \(\beta \) is bi-additive.
 - \(\beta(rx, y) = \beta(x, \varepsilon(r)y) \) for \(x, y \in A^n, r \in R \).
 - Impose one more property: there exists a unit \(e \in R \) such that \(\beta(x, y) = \beta(ey, x) \) for \(x, y \in A^n \).
Additive properties of C^\perp

- Recall $C^\perp = \psi^{-1}(\hat{A}^n : C)$.
- In terms of β: $C^\perp = \{y \in A^n : \beta(C, y) = 0\}$.
- Even if $C \subseteq A^n$ is just an additive code, we have $|C| \cdot |C^\perp| = |A^n|$ and the MacWilliams identities.
- For an additive code C, $e^{-1}C = (C^\perp)^\perp$. This uses the $\beta(x, y) = \beta(ey, x)$ condition.
Module properties of C^\perp

- If C is a left linear code, then so is C^\perp.
- If C is a left linear code, then $(C^\perp)^\perp = C$. (Because $e^{-1}C = C$.)
- When C is a left linear code, we also have $C^\perp = \{y \in A^n : \beta(y, C) = 0\}$. (Because $\beta(x, y) = \beta(ey, x) = \beta(y, \varepsilon(e)x)$.)
Ring alphabets

- Suppose R admits an anti-isomorphism ε.
- Let $A = R$. Then there exists an isomorphism $\psi : \varepsilon(A) \to \hat{A}$ if and only if R is Frobenius.
- When a Frobenius ring R has generating character ϱ, then

$$\beta(x, y) = \sum_{i=1}^{n} \varrho \left(\varepsilon^{-1}(y_i)x_i \right),$$

for $x, y \in R^n$.
Example (a)

- Consider a simple finite ring R.
- A left linear code C of length 1 is a left ideal.
- Without using characters, one could consider

 \[l(C) = \{x \in R : xC = 0\} \]

 \[r(C) = \{y \in R : Cy = 0\}. \]

- If $C = l(C)$ or $C = r(C)$, C must be a two-sided ideal. Hence, $C = 0$ or $C = R$.
Consider $R = M_{k \times k}(\mathbb{F}_2)$, a Frobenius ring with involution ε equaling the matrix transpose and generating character $\varrho(P) = \frac{\text{Tr}(P)}{2}$, $P \in R$.

Then $\beta(P, Q) = \varrho(\varepsilon^{-1}(Q)P) = \frac{\text{Tr}(Q^T P)}{2}$.

Thus $\beta(P, Q) = (1/2) \sum_{i,j} Q_{ij}P_{ij} \in \mathbb{Q}/\mathbb{Z}$.
Example (c)

- For $k = 2$, there are proper left ideals ($a, b \in \mathbb{F}_2$):

 \[
 C_1 = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} \right\}, \quad C_2 = \left\{ \begin{bmatrix} 0 & a \\ 0 & b \end{bmatrix} \right\}, \quad C_3 = \left\{ \begin{bmatrix} a & a \\ b & b \end{bmatrix} \right\}.
 \]

- Then $C_1^\perp = C_2$, $C_2^\perp = C_1$, and $C_3^\perp = C_3$.
Gleason’s theorem

- The Hamming weight enumerators of binary self-dual codes (or binary doubly-even self-dual codes) are invariant under the action of a finite subgroup of $GL(2, \mathbb{C})$, because of weight restrictions on the codewords and the MacWilliams identities.
- Gleason (1970) proved that the Hamming weight enumerators of two specific codes generate the ring of all invariant polynomials under these subgroup actions.
Questions

▶ Which finite rings admit anti-isomorphisms? involutions?
▶ Which finite Frobenius rings do?
▶ For rings with ε, which left modules A admit an isomorphism $\psi : \varepsilon(A) \rightarrow \hat{A}$?
▶ Can Gleason’s theorem be generalized beyond principal ideal rings?