Isometry Groups of Additive Codes over Finite Fields

Jay A. Wood

Department of Mathematics Western Michigan University http://homepages.wmich.edu/~jwood

Central China Normal University Wuhan, Hubei May 15, 2018

Isometries of additive codes over finite fields

- Additive codes as linear codes over modules
- Failure of EP
- Monomial and isometry groups
- Examples
- Criteria in terms of multiplicity functions
- Structure of ker W
- EP for short codes
- Building codes with prescribed groups
- Extreme examples

Additive \mathbb{F}_4 -codes

- ▶ There has been interest in additive codes with alphabet $A = \mathbb{F}_4$.
- Such codes are the same as R-linear codes over A with $R = \mathbb{F}_2$ and $A = \mathbb{F}_4$, regarding \mathbb{F}_4 as an \mathbb{F}_2 -vector space of dimension 2.
- ▶ Generalize to case of $R = M_{k \times k}(\mathbb{F}_q)$ and $A = M_{k \times \ell}(\mathbb{F}_q)$. Information module will be $M = M_{k \times m}(\mathbb{F}_q)$.
- Call this the matrix module context.

Failure of EP when $k < \ell$

- ▶ Recall that EP for Hamming weight fails in the matrix module context when $k < \ell$ and k < m.
- ▶ In terms of the *W*-map:

$$W: F_0(\mathcal{O}^{\sharp}, \mathbb{Q}) \to F_0(\mathcal{O}, \mathbb{Q})$$

fails to be injective for all information modules M.

Isometry Groups

May 15, 2018

Isometry group

- General set-up: ring R, alphabet A, weight w on A.
- ▶ Let $C \subseteq A^n$ be an R-linear code.
- ▶ Consider self-maps: linear isometries $f: C \to C$; i.e., w(cf) = w(c), for all $c \in C$.
- ▶ When C is given as the image of a parametrized code $\Lambda: M \to A^n$, we define the **isometry group**:

$$\mathsf{Isom}(C) = \{g \in \mathsf{GL}_R(M) : \mathsf{there} \ \mathsf{exists} \ \mathsf{a} \ \mathsf{linear} \ \mathsf{isometry} \ f : C \to C \ \mathsf{such} \ \mathsf{that} \ g\Lambda = \Lambda f \}.$$

View isometries on M rather than C.

Isometry Groups

Monomial group

- ▶ Recall that the weight w on A has a right symmetry group $G_{\mathsf{rt}} = \{ \phi \in \mathsf{GL}_R(A) : w(a\phi) = w(a), a \in A \}.$
- ► For linear code $C \subseteq A^n$, define the **monomial** group

Monom(
$$C$$
) ={ $T : A^n \to A^n, G_{rt}$ -monomial transformation, with $CT = C$ }.

Isometry Groups

Restriction map

Any $T \in Monom(C)$, when restricted to C, gives an isometry on C. By viewing the isometry on M, we get a group homomorphism

restr : $Monom(C) \rightarrow Isom(C)$.

- ▶ Denote ker restr = $Monom_0(C)$. Think of repeated columns in a generator matrix: can permute columns without changing the codewords.
- If EP holds, then restr is surjective.

Main question

- ▶ When EP fails, restr may not be surjective for all linear codes *C* or information modules *M*.
- ▶ Then $\operatorname{restr}(\operatorname{Monom}(C)) \subseteq \operatorname{Isom}(C) \subseteq \operatorname{GL}_R(M)$.
- ▶ What subgroups of $GL_R(M)$ can occur as restr(Monom(C)) and Isom(C)?

Example 1 (a)

• Additive code over $\mathbb{F}_4 = \mathbb{F}_2[\omega]/(\omega^2 + \omega + 1)$ with generator matrix G_1 and list of codewords. $M = \mathbb{F}_2^3$.

$$G_1 = \left[egin{array}{cccc} 1 & \omega & 0 \ \omega & 1 & 0 \ 1 & 0 & 1 \end{array}
ight], \qquad egin{array}{cccc} \omega & 1 & 0 \ \omega^2 & \omega^2 & 0 \ 1 & 0 & 1 \ 0 & \omega & 1 \ \omega^2 & 1 & 1 \ \omega & \omega^2 & 1 \end{array}
ight]$$

$$\begin{array}{ccccc} 0 & 0 & 0 \\ 1 & \omega & 0 \\ \omega & 1 & 0 \\ \omega^2 & \omega^2 & 0 \\ 1 & 0 & 1 \\ 0 & \omega & 1 \\ \omega^2 & 1 & 1 \\ \omega & \omega^2 & 1 \end{array}$$

Isometry Groups

Example 1 (b)

Consider three elements of GL_R(M) = GL(3, F₂):

$$f_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad f_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

- ▶ f_1 , f_2 generate restr(Monom(C)), a Klein 4-group. But f_1 , f_3 generate Isom(C), a dihedral group of order 8. ($f_2 = f_1 f_3^2$.)
- ▶ Magma found only the cyclic 2-group generated by f_1f_2 . (Magma looks only for \mathbb{F}_4 -linear maps.)

Isometry Groups May 15, 2018 10 / 27

Example 2 (a)

Additive code over \mathbb{F}_4 with generator matrix G_2 and list of codewords. Again, $M = \mathbb{F}_2^3$.

$$\label{eq:G2} \textit{G}_{2} = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega \\ \omega & \omega & 1 & 0 & \omega^{2} \end{array} \right],$$

_				
0	0	0	0	0
0	1	1	1	1
1	0	1	ω	ω
1	1	0	ω^2	ω^2
ω	ω	1	0	ω^2
ω	ω^2	0	1	ω
ω^2	ω	0	ω	1
ω^2	ω^2	1	ω^2	0

Example 2 (b)

▶ Consider three elements of $GL_R(M) = GL(3, \mathbb{F}_2)$:

$$\textit{f}_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \textit{f}_{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad \textit{f}_{6} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

- These elements generate $\operatorname{restr}(\operatorname{Monom}(C)) \cong \Sigma_4$, the symmetric group on 4 elements, while $\operatorname{Isom}(C) = \operatorname{GL}(3, \mathbb{F}_2)$, the simple group of order 168.
- ► Magma found only a cyclic 4-group generated by $f = f_4 f_5 f_6 f_4 f_5 f_4 f_6$.

12 / 27

Closure for group actions

- Some of the hypotheses of the main result involve a notion of closure with respect to a group action.
- ► This idea goes back at least to Wielandt, 1964.
- ▶ Suppose a finite group G acts on a set X.
- ▶ A subgroup $H \subseteq G$ partitions X into H-orbits.
- ▶ Define the **closure** of *H* with respect to the action:

$$\bar{H} = \{g \in G : g \operatorname{orb}_H(x) = \operatorname{orb}_H(x), x \in X\}.$$

▶ Subgroup $H \subseteq G$ is **closed** with respect to the action if $\overline{H} = H$.

Closure conditions

- ▶ Usual set-up: ring R, alphabet A, weight w, information module M. Orbit spaces \mathcal{O} and \mathcal{O}^{\sharp} .
- ▶ $\mathcal{O} = G_{lt} \setminus M$: $GL_R(M)$ acts on the right of \mathcal{O} , and on the left of $F_0(\mathcal{O}, \mathbb{Q})$.
- ▶ $\mathcal{O}^{\sharp} = \operatorname{Hom}_{R}(M, A)/G_{rt}$: $\operatorname{GL}_{R}(M)$ acts on the left, and on the right of $F_{0}(\mathcal{O}^{\sharp}, \mathbb{Q})$: $(\eta f)([\lambda]) = \eta([f\lambda])$.
- ▶ For $H_1 \subseteq H_2 \subseteq GL_R(M)$, will want H_1 to be closed for the \mathcal{O}^{\sharp} -action and H_2 closed for the \mathcal{O} -action.
- "Not every subgroup gets to be an isometry group."

Statement of main result

Theorem

Matrix module context with $k < \ell < m$ and the Hamming weight on A. For any choice of subgroups $H_1 \subseteq H_2 \subseteq \operatorname{GL}_R(M)$ with H_1 closed for the \mathcal{O}^\sharp -action and H_2 closed for the \mathcal{O} -action, there exists a linear code C modeled on M such that $H_1 = \operatorname{restr}(\operatorname{Monom}(C))$ and $H_2 = \operatorname{Isom}(C)$.

Corollary

Same matrix module context. There exists a linear code C modeled on M with $\operatorname{restr}(\operatorname{Monom}(C)) = \{\mathbb{F}_q^{\times} \cdot \operatorname{id}_M\}$ and $\operatorname{Isom}(C) = \operatorname{GL}_R(M)$.

Using multiplicity functions

- ▶ Up to G_{rt} -monomial transformations, a parametrized code $\Lambda: M \to A^n$ is determined by its multiplicity function $\eta_{\Lambda} \in F_0(\mathcal{O}^{\sharp}, \mathbb{N})$.
- ▶ Recall the *W*-map: $W: F_0(\mathcal{O}^{\sharp}, \mathbb{Q}) \to F_0(\mathcal{O}, \mathbb{Q})$.
- ▶ Recall the right action of $GL_R(M)$ on $F_0(\mathcal{O}^{\sharp}, \mathbb{Q})$: $(\eta f)([\lambda]) = \eta([f\lambda]).$
- ▶ For $f \in GL_R(M)$, $f \in restr(Monom(\eta))$ if and only if $\eta f = \eta$.
- ▶ For $f \in GL_R(M)$, $f \in Isom(\eta)$ if and only if $\eta f \eta \in \ker W$.

Structure of ker W (a)

- In the matrix module context, \mathcal{O}^{\sharp} is the set of CRE matrices of size $m \times \ell$, while \mathcal{O} is the set of RRE matrices of size $k \times m$.
- ▶ Remember $k < \ell < m$. By dimension counting,

$$\ker W \ge \sum_{i=k+1}^{\ell} \begin{bmatrix} m \\ i \end{bmatrix}_q, \tag{1}$$

using the *q*-binomial coefficients.

Isometry Groups

Structure of ker W (b)

- ► The orbit space O[‡] is partitioned by rank.
- By explicit constructions, one produces independent elements $\eta_{[\lambda]} \in \ker W$. For each $i = k+1,\ldots,\ell$, one produces $\begin{bmatrix} m \\ i \end{bmatrix}_q$ of them, each $\eta_{[\lambda]}$ supported on $[\lambda]$ of rank i and on specific elements of smaller rank. ("Triangular.") This produces as many independent elements of $\ker W$ as the sum in (1).
- Separately, one shows that W is surjective, so there is equality in (1), and we have an explicit basis for ker W.

Aside: EP for short codes

- Serhii Dyshko (Toulon) has shown that EP holds even when $k < \ell$, **provided** n is sufficiently small $(n \le q \text{ when } k = 1)$.
- ▶ Elements of ker W affect the length of the code.
- The exact details of this need to be better understood.

Idea of proof (a)

- ► Elements $[x] \in \mathcal{O}$ have a well-defined rank, $\operatorname{rk}[x]$. The $\operatorname{GL}_R(M)$ -action preserves this rank.
- ▶ Pick a function w on \mathcal{O} that (1) is constant on each and separates the H_2 -orbits on \mathcal{O} and (2) is an increasing function of $\operatorname{rk}[x]$.
- ▶ Because W is surjective, there exists η with $W(\eta) = w$. A priori, η has rational values.
- ▶ Can modify η to have non-negative integer values and still satisfy (1) and (2).

Idea of proof (b)

- ▶ Replace η by an averaged version so that η is also constant on the H_2 -orbits on \mathcal{O}^{\sharp} . This does not change $W(\eta)$. Clear denominators of η , which scales everything.
- At this point, η has non-negative integer values, is constant on H_2 -orbits on \mathcal{O}^{\sharp} , and is constant on and separates H_2 -orbits on \mathcal{O} .

Idea of proof (c)

- ▶ Claim restr(Monom (η)) = Isom $(\eta) = H_2$.
- From η constant on H_2 -orbits on \mathcal{O}^{\sharp} , $H_2 \subseteq \operatorname{restr}(\operatorname{Monom}(\eta))$.
- ▶ We always have $restr(Monom(\eta)) \subseteq Isom(\eta)$.
- Suppose $f \in \text{Isom}(\eta)$. Because $w = W(\eta)$ separates H_2 -orbits on \mathcal{O} , w(xf) = w(x) implies $f \in \overline{H}_2$. The closure hypothesis implies $f \in H_2$.

Idea of proof (d)

- ▶ Modify η using $\eta_{[\lambda]} \in \ker W$ to separate H_1 -orbits on \mathcal{O}^{\sharp} (rank-by-rank, from rank ℓ down to rank k+1).
- ▶ Because of "triangular" form of $\eta_{[\lambda]}$, a change at rank i does not disturb changes at higher ranks.
- The final η preserves H_1 -orbits on \mathcal{O}^{\sharp} , so $H_1 \subseteq \operatorname{restr}(\operatorname{Monom}(\eta))$. Conversely, any $f \in \operatorname{restr}(\operatorname{Monom}(\eta))$ preserves H_1 -orbits on \mathcal{O}^{\sharp} (η separates), so $f \in H_1$. Closure implies $f \in H_1$.
- ▶ Because modifications were made by $\eta_{[\lambda]} \in \ker W$, $W(\eta)$ has not changed. We still have $\operatorname{Isom}(\eta) = H_2$.

Extreme example (a)

▶ $R = \mathbb{F}_2$, $A = \mathbb{F}_4$, $M = \mathbb{F}_2^3$. Multiplicities as indicated. Length n = 28.

multiplicity	1	4	2	2	4	1	3	5	6
	1	0	0	1	1	1	1	1	1
G	0	1	1	ω	ω	ω	ω	0	1
	1	0	1	0	ω	1	$\frac{1}{\omega}$ ω^2	ω	ω

All codewords have weight 22, so $Isom(C) = GL(3, \mathbb{F}_2)$, while $restr(Monom(C)) = \{id_M\}$.

Extreme example (b)

• Additive code over $\mathbb{F}_9 = \mathbb{F}_3[\omega]/(\omega^2 - \omega - 1)$.

mult.	5	3	6	1	1	1	2	2	2	4	3	2
	0	0	0	1	1	1	1	1	1	1	1	1
G_3	0	1	1	0	0	0	1	1	1	-1	-1	-1
<i>G</i> ₃	1	1	-1	0	1	-1	0	1	-1	0	1	-1

6	3	7	8	9	6	4	5	2	3	1
1	1	1	1	1	1	1	1	1	1	1
0	1	ω	ω	ω	ω	ω	ω	ω	ω	ω
ω	ω	0	1	-1	ω	$\omega + 1$	$\omega - 1$	$-\omega$	$-\omega + 1$	$-\omega - 1$

◆ロト ◆問ト ◆意ト ◆意ト ・ 意 ・ 夕久(*)

Extreme example (b) continued

- ▶ Code has length n = 86; all codewords have weight 72.
- ▶ $Isom(C) = GL(3, \mathbb{F}_3)$, of order 11, 232.
- ▶ restr(Monom(C)) = { $\pm id_M$ } is minimum possible.

Other alphabets

- Most of the result carries over to any alphabet with non-cyclic socle, such as non-Frobenius rings.
- ▶ Get restr(Monom(η)) $\subseteq H_1$ only, but still have $H_2 = \text{Isom}(\eta)$.
- ▶ This is enough to get the extreme cases.