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Classical coding theory

Let F = Fq be a finite field. A linear code C

of length n and dimension k is a k-dimensional

linear subspace C ⊂ Fn.

A linear code C is often presented as the im-

age of a linear transformation G : Fk → Fn

represented by a k × n generator matrix, also

denoted by G. The code C is then the row

space of G.



Equivalence

Two linear codes C, C′ of length n and dimen-

sion k are equivalent (with respect to Ham-

ming weight) if there is an invertible transfor-

mation P of Fk and a monomial transformation

T of Fn so that the generator matrices satisfy

G′ = PGT.

The Hamming weight wt(x) of x ∈ Fn is the

number of nonzero entries of x.

The monomial transformation T : C → C′ pre-

serves Hamming weight.



Theorem of MacWilliams

Theorem (MacWilliams, 1961) Let C, C′ be

two linear codes in Fn. If T : C → C′ is a lin-

ear isomorphism preserving Hamming weight,

then T extends to a monomial transformation

of Fn.



Definition of linear codes over a ring

Let R be a finite ring with 1, with U denoting

the group of units of R. A linear code C of

length n is a left submodule of Rn.

Denote the underlying (finite) module of the

code C by M . Then the linear code C is a linear

embedding M → Rn, given by a list (λ1, . . . , λn)

of linear functionals on M .

Up to monomial transformations, it is enough

to keep track of the multiplicities of U-scale

classes of linear functionals.



Functional point of view

Let O] denote the U-scale classes of nonzero

linear functionals on M and O the U-scale classes

of nonzero elements of M .

Linear codes with underlying module M are pa-

rameterized, up to monomial equivalence, by

multiplicity functions η : O] → N. Denote by

N[O]] the set of all such multiplicity functions.

Associated to every linear code C = (M, η) is

the function of weights of elements of M :

wη(x) =
∑

λ∈O]

η(λ)w(xλ), x ∈ M,

where w is the Hamming weight. Note that

wη(ux) = wη(x), x ∈ M , u ∈ U. This induces a

map

W : N[O]]→ N[O], η 7→ wη.



Virtual linear codes

This is a Grothendieck-type construction.

A virtual linear code C = (M, η) consists of a

module M and a Q-valued multiplicity function

η ∈ Q[O]].

Then W extends naturally to a Q-linear trans-

formation

W : Q[O]]→ Q[O].

In the case of R = F, a finite field, the theorem

of MacWilliams says that W is injective for any

M .



Two main theorems

Theorem If R is a finite Frobenius ring, then

W is injective for any finite module M .

The original proof of this in 1999 was character-

theoretic. Greferath and Schmidt have also

provided a combinatorial proof.

Theorem If R is a finite ring and W is injec-

tive for any finite module M , then R is Frobe-

nius.

This is today’s main topic, and we follow a

strategy of Dinh and López-Permouth



Finite Frobenius rings

Suppose R is a finite ring with 1.

As rings, R/Rad(R) ∼=
⊕

Mµi(Fqi).

Principal decomposition: RR ∼=
⊕

µiRei.

Top quotients: T (Rei) = Rei/Rad(R)ei, the

pull-back of the birth-certificate representation

of Mµi(Fqi).

Quasi-Frobenius (QF): there is a permutation

σ with T (Rei)
∼= Soc(Reσ(i)) and Soc(eiR) ∼=

T (eσ(i)R).

Frobenius: QF, plus µσ(i) = µi. R/Rad(R) ∼=
Soc(R), as one-sided modules.



Strategy of Dinh and López-Permouth

1. If R is not Frobenius, then there exists

kT (Rei) ⊂ Soc(R) ⊂ R, for some index i

and multiplicity k > µi.

2. Build counter-examples over the alphabet

Mµi,k(Fqi), when k > µi. The alphabet is a

left module over Mµi(Fqi). (New)

3. Pull back the counter-examples to R.



Linear codes over modules

Important work was done by Greferath, Nechaev,

and Wisbauer.

Start with two finite rings R and S and a finite

(R, S)-bimodule A (for alphabet).

An R-linear code over A is a left R-submodule

C ⊂ An for some n.

View the linear code C as the image of an R-

linear map M → An composed from n R-linear

maps M → A.



Functional point of view

Let O denote the U(R)-scale classes of nonzero

elements of M and O] the U(S)-scale classes

of nonzero elements of HomR(M, A).

Up to monomial transformations, a linear code

with underlying module M is determined by a

multiplicity function η ∈ N[O]].

By generalizing to virtual codes, we again get

a linear transformation

W : Q[O]]→ Q[O].



Counter-examples

Let R = Mµi(Fqi), S = Mk(Fqi), and A =

Mµi,k(Fqi). Then U(R) = GL(µi, Fqi) and U(S) =

GL(k, Fqi).

Theorem If k > µi, then there exists a finite

left R-module M such that W is not injective.



Analysis of W

Let M = Mµi,t(Fqi), with t > µi. M is a left

R-module. The set O consists of the nonzero

row echelon classes of µi× t matrices over Fqi.

The vector space Q[O] has dimension equal to

the number of these row echelon classes.

The space HomR(M, A) = Mt,k(Fqi). The set

O] consists of the column echelon classes of

t × k matrices over Fqi. The dimension of the

vector space Q[O]] is equal to the number of

such column echelon classes.

Since k > µi, dim(Q[O]]) > dim(Q[O]), so that

W cannot be injective.



Example

Suppose k = t = µi+1. In this case, dim(Q[O]]) =

1 + dim(Q[O]), so that dimker W ≥ 1.

With t = k, M = A. We build two linear maps

g+, g− : A → AN by constructing two vectors

v+, v− in Mk(Fqi)
N and multiplying component-

wise, denoted as g±(x) = xv±, for x ∈ A.

The vector v+ (resp., v−) consists of all nonzero

column echelon matrices of size k × k over Fqi

of even (resp., odd) rank, with multiplicity q(
r
2)

(where r is the rank of the matrix).

Homework: show that wt(g+(x)) = wt(g−(x)),

for all x ∈ A.

There is no monomial transformation taking

the image of g+ to the image of g−.


