Code Equivalence and Finite Frobenius Rings

Jay A. Wood Western Michigan University jay.wood@wmich.edu http://homepages.wmich.edu/~jwood

> OSU-Denison Conference Columbus, Ohio May 19, 2006

Acknowledgments

My thinking about equivalence of linear codes has been influenced greatly by recent work of a number of authors (Dinh, Greferath, Honold, López-Permouth, Nechaev, Schmidt, Wisbauer, ...). I wish to express my gratitude to them all. Classical coding theory

Let $\mathbb{F} = \mathbb{F}_q$ be a finite field. A *linear code* C of *length* n and *dimension* k is a k-dimensional linear subspace $C \subset \mathbb{F}^n$.

A linear code C is often presented as the image of a linear transformation $G : \mathbb{F}^k \to \mathbb{F}^n$ represented by a $k \times n$ generator matrix, also denoted by G. The code C is then the row space of G.

Equivalence

Two linear codes C, C' of length n and dimension k are *equivalent* (with respect to Hamming weight) if there is an invertible transformation P of \mathbb{F}^k and a monomial transformation T of \mathbb{F}^n so that the generator matrices satisfy

$$G' = PGT.$$

The Hamming weight wt(x) of $x \in \mathbb{F}^n$ is the number of nonzero entries of x.

The monomial transformation $T: C \rightarrow C'$ preserves Hamming weight.

Theorem of MacWilliams

Theorem (MacWilliams, 1961) Let C, C' be two linear codes in \mathbb{F}^n . If $T : C \to C'$ is a linear isomorphism preserving Hamming weight, then T extends to a monomial transformation of \mathbb{F}^n . Definition of linear codes over a ring

Let R be a finite ring with 1, with \mathcal{U} denoting the group of units of R. A *linear code* C of length n is a left submodule of R^n .

Denote the underlying (finite) module of the code C by M. Then the linear code C is a linear embedding $M \to R^n$, given by a list $(\lambda_1, \ldots, \lambda_n)$ of linear functionals on M.

Up to monomial transformations, it is enough to keep track of the multiplicities of \mathcal{U} -scale classes of linear functionals.

Functional point of view

Let \mathcal{O}^{\sharp} denote the \mathcal{U} -scale classes of nonzero linear functionals on M and \mathcal{O} the \mathcal{U} -scale classes of nonzero elements of M.

Linear codes with underlying module M are parameterized, up to monomial equivalence, by multiplicity functions $\eta : \mathcal{O}^{\sharp} \to \mathbb{N}$. Denote by $\mathbb{N}[\mathcal{O}^{\sharp}]$ the set of all such multiplicity functions.

Associated to every linear code $C = (M, \eta)$ is the function of weights of elements of M:

$$w_{\eta}(x) = \sum_{\lambda \in \mathcal{O}^{\sharp}} \eta(\lambda) w(x\lambda), \quad x \in M,$$

where w is the Hamming weight. Note that $w_{\eta}(ux) = w_{\eta}(x)$, $x \in M$, $u \in \mathcal{U}$. This induces a map

$$W: \mathbb{N}[\mathcal{O}^{\sharp}] \to \mathbb{N}[\mathcal{O}], \quad \eta \mapsto w_{\eta}.$$

Virtual linear codes

This is a Grothendieck-type construction.

A virtual linear code $C = (M, \eta)$ consists of a module M and a \mathbb{Q} -valued multiplicity function $\eta \in \mathbb{Q}[\mathcal{O}^{\sharp}].$

Then W extends naturally to a \mathbb{Q} -linear transformation

$$W: \mathbb{Q}[\mathcal{O}^{\sharp}] \to \mathbb{Q}[\mathcal{O}].$$

In the case of $R = \mathbb{F}$, a finite field, the theorem of MacWilliams says that W is injective for any M.

Two main theorems

Theorem If R is a finite Frobenius ring, then W is injective for any finite module M.

The original proof of this in 1999 was charactertheoretic. Greferath and Schmidt have also provided a combinatorial proof.

Theorem If R is a finite ring and W is injective for any finite module M, then R is Frobenius.

This is today's main topic, and we follow a strategy of Dinh and López-Permouth

Finite Frobenius rings

Suppose R is a finite ring with 1.

As rings, $R/\mathsf{Rad}(R) \cong \bigoplus M_{\mu_i}(\mathbb{F}_{q_i})$.

Principal decomposition: $_{R}R \cong \bigoplus \mu_{i}Re_{i}$.

Top quotients: $T(Re_i) = Re_i/Rad(R)e_i$, the pull-back of the birth-certificate representation of $M_{\mu_i}(\mathbb{F}_{q_i})$.

Quasi-Frobenius (QF): there is a permutation σ with $T(Re_i) \cong Soc(Re_{\sigma(i)})$ and $Soc(e_iR) \cong T(e_{\sigma(i)}R)$.

Frobenius: QF, plus $\mu_{\sigma(i)} = \mu_i$. $R/\text{Rad}(R) \cong$ Soc(R), as one-sided modules. Strategy of Dinh and López-Permouth

- 1. If R is not Frobenius, then there exists $kT(Re_i) \subset Soc(R) \subset R$, for some index i and multiplicity $k > \mu_i$.
- 2. Build counter-examples over the alphabet $M_{\mu_i,k}(\mathbb{F}_{q_i})$, when $k > \mu_i$. The alphabet is a left module over $M_{\mu_i}(\mathbb{F}_{q_i})$. (New)
- 3. Pull back the counter-examples to R.

Linear codes over modules

Important work was done by Greferath, Nechaev, and Wisbauer.

Start with two finite rings R and S and a finite (R, S)-bimodule A (for *alphabet*).

An *R*-linear code over *A* is a left *R*-submodule $C \subset A^n$ for some *n*.

View the linear code C as the image of an Rlinear map $M \to A^n$ composed from n R-linear maps $M \to A$. Functional point of view

Let \mathcal{O} denote the $\mathcal{U}(R)$ -scale classes of nonzero elements of M and \mathcal{O}^{\sharp} the $\mathcal{U}(S)$ -scale classes of nonzero elements of $\operatorname{Hom}_{R}(M, A)$.

Up to monomial transformations, a linear code with underlying module M is determined by a multiplicity function $\eta \in \mathbb{N}[\mathcal{O}^{\sharp}]$.

By generalizing to virtual codes, we again get a linear transformation

 $W: \mathbb{Q}[\mathcal{O}^{\sharp}] \to \mathbb{Q}[\mathcal{O}].$

Counter-examples

Let $R = M_{\mu_i}(\mathbb{F}_{q_i})$, $S = M_k(\mathbb{F}_{q_i})$, and $A = M_{\mu_i,k}(\mathbb{F}_{q_i})$. Then $\mathcal{U}(R) = GL(\mu_i, \mathbb{F}_{q_i})$ and $\mathcal{U}(S) = GL(k, \mathbb{F}_{q_i})$.

Theorem If $k > \mu_i$, then there exists a finite left *R*-module *M* such that *W* is not injective.

Analysis of W

Let $M = M_{\mu_i,t}(\mathbb{F}_{q_i})$, with $t > \mu_i$. M is a left R-module. The set \mathcal{O} consists of the nonzero row echelon classes of $\mu_i \times t$ matrices over \mathbb{F}_{q_i} . The vector space $\mathbb{Q}[\mathcal{O}]$ has dimension equal to the number of these row echelon classes.

The space $\operatorname{Hom}_R(M, A) = M_{t,k}(\mathbb{F}_{q_i})$. The set \mathcal{O}^{\sharp} consists of the column echelon classes of $t \times k$ matrices over \mathbb{F}_{q_i} . The dimension of the vector space $\mathbb{Q}[\mathcal{O}^{\sharp}]$ is equal to the number of such column echelon classes.

Since $k > \mu_i$, dim($\mathbb{Q}[\mathcal{O}^{\sharp}]$) > dim($\mathbb{Q}[\mathcal{O}]$), so that W cannot be injective.

Example

Suppose $k = t = \mu_i + 1$. In this case, dim $(\mathbb{Q}[\mathcal{O}^{\sharp}]) = 1 + \dim(\mathbb{Q}[\mathcal{O}])$, so that dim ker $W \ge 1$.

With t = k, M = A. We build two linear maps $g_+, g_- : A \to A^N$ by constructing two vectors v_+, v_- in $M_k(\mathbb{F}_{q_i})^N$ and multiplying componentwise, denoted as $g_{\pm}(x) = xv_{\pm}$, for $x \in A$.

The vector v_+ (resp., v_-) consists of all nonzero column echelon matrices of size $k \times k$ over \mathbb{F}_{q_i} of even (resp., odd) rank, with multiplicity $q^{\binom{r}{2}}$ (where r is the rank of the matrix).

Homework: show that $wt(g_+(x)) = wt(g_-(x))$, for all $x \in A$.

There is no monomial transformation taking the image of g_+ to the image of g_- .