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Classical coding theory

Let F = Iy be a finite field. A linear code C
of length n and dimension k is a k-dimensional
linear subspace C' C F".

A linear code C' is often presented as the im-
age of a linear transformation G : Fk — Fn
represented by a k x n generator matrix, also
denoted by . The code C is then the row
space of G.



Equivalence

Two linear codes C,C’ of length n and dimen-
sion k are equivalent (with respect to Ham-
ming weight) if there is an invertible transfor-
mation P of F¥ and a monomial transformation
T of F" so that the generator matrices satisfy

G' = PGT.

The Hamming weight wt(x) of x € F" is the
number of nonzero entries of x.

The monomial transformation T : C — C’ pre-
serves Hamming weight.



Theorem of MacWilliams

Theorem (MacWilliams, 1961) LetC,C’ be
two linear codes in F*. If T : C — C’" is a lin-
ear iIsomorphism preserving Hamming weight,

then T extends to a monomial transformation
of ™,



Definition of linear codes over a ring

Let R be a finite ring with 1, with U4 denoting
the group of units of R. A linear code C of
length n is a left submodule of R™.

Denote the underlying (finite) module of the
code C by M. Then the linear code C'is a linear
embedding M — R"™, given by a list (A1,...,An)
of linear functionals on M.

Up to monomial transformations, it is enough
to keep track of the multiplicities of U/-scale
classes of linear functionals.



Functional point of view

Let OFf denote the U-scale classes of nonzero
linear functionals on M and O the U/-scale classes
of nonzero elements of M.

Linear codes with underlying module M are pa-
rameterized, up to monomial equivalence, by
multiplicity functions n : ®¥ — N. Denote by
N[OF] the set of all such multiplicity functions.

Associated to every linear code C = (M,n) is
the function of weights of elements of M:

wy(z) = Z n(Nw(xzA), x€ M,
A€ Of

where w is the Hamming weight. Note that
wp(ux) = wy(x), x € M, uw € U. This induces a
map

W:N[Oﬂ]—)N[O], N — wp.



Virtual linear codes
This is a Grothendieck-type construction.

A virtual linear code C = (M,n) consists of a
module M and a Q-valued multiplicity function

n € QIOH].

Then W extends naturally to a Q-linear trans-
formation

W Q[OF] — Q[O].

In the case of R = I, a finite field, the theorem
of MacWilliams says that W is injective for any
M.



Two main theorems

Theorem If R is a finite Frobenius ring, then
W is injective for any finite module M .

T he original proof of this in 1999 was character-
theoretic. Greferath and Schmidt have also
provided a combinatorial proof.

Theorem If R is a finite ring and W is injec-
tive for any finite module M, then R is Frobe-
nius.

This is today’'s main topic, and we follow a
strategy of Dinh and Lopez-Permouth



Finite Frobenius rings

Suppose R is a finite ring with 1.

As rings, R/Rad(R) = @ M,,,(Fy.).

Principal decomposition: pR = @ u;Re;.

Top quotients: T(Re;) = Re;/Rad(R)e;, the
pull-back of the birth-certificate representation
of M, (Fg,).

Quasi-Frobenius (QF): there is a permutation

o with T(RGZ‘) = SOC(Rea(i)) and SOC(GZ-R) =
T(e )R)

o(1
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Frobenius: QF, plus p,;y = pi. R/Rad(R)
Soc(R), as one-sided modules.



Strategy of Dinh and Lopez-Permouth

1. If R is not Frobenius, then there exists
kT(Re;) C Soc(R) C R, for some index 1
and multiplicity k& > u;.

2. Build counter-examples over the alphabet
M,,. (Fg;), when k > p;. The alphabet is a
left module over M. (Fg). (New)

3. Pull back the counter-examples to R.



Linear codes over modules

Important work was done by Greferath, Nechaeyv,
and Wisbauer.

Start with two finite rings R and S and a finite
(R, S)-bimodule A (for alphabet).

An R-linear code over A is a left R-submodule
C C A" for some n.

View the linear code C as the image of an R-
linear map M — A"™ composed from n R-linear
maps M — A.



Functional point of view

Let O denote the U (R)-scale classes of nonzero
elements of M and OF the U(S)-scale classes
of nonzero elements of Homg(M, A).

Up to monomial transformations, a linear code
with underlying module M is determined by a
multiplicity function n € N[Of].

By generalizing to virtual codes, we again get
a linear transformation

W : Q[OF] — Q[O].



Counter-examples

M, ,(Fg). ThenU(R) = GL(p;,Fg;) and U(S) =
GL(k,Fy).

Theorem If k> u;, then there exists a finite
left R-module M such that W is not injective.



Analysis of W

Let M = M, +(Fg), with t > pu;. M is a left
R-module. The set O consists of the nonzero
row echelon classes of u; Xt matrices over I,.
The vector space Q[O] has dimension equal to
the number of these row echelon classes.

The space Homg(M, A) = M; 1 (Fg). The set
Of consists of the column echelon classes of
t X k matrices over Ig,. The dimension of the
vector space Q[OF] is equal to the number of
such column echelon classes.

Since k > p;, dim(Q[O¥]) > dim(Q[O]), so that
W cannot be injective.



Example

Suppose k =t = u,;+1. In this case, dim(Q[O¥]) =
1 +dim(Q[O]), so that dimkerW > 1.

With t =k, M = A. We build two linear maps
g4,9— A — AN by constructing two vectors
vy, v_ in My(Fg,)" and multiplying component-
wise, denoted as g+ (x) = zvy, for xz € A.

The vector vy (resp., v—) consists of all nonzero
column echelon matrices of size k£ x k over [y,
of even (resp., odd) rank, with multiplicity q(g)
(where r is the rank of the matrix).

Homework: show that wt(gy (z)) = wt(g—(z)),
for all x € A.

There is no monomial transformation taking
the image of g4 to the image of g_.



