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Abstract. Carlet [2] has determined the linear codes over Z=(4)
of constant Lee weight. This extended abstract describes a di�erent
approach to this problem, along the lines of [4], which has the
potential to apply to a wide class of examples. In particular, we
show that linear codes of constant Lee or Euclidean weight seldom
exist over Z=(p2) when p is an odd prime.

Over �nite �elds, any linear code with constant Hamming weight is
a replication of simplex (i.e., dual Hamming) codes. There are several
proofs of this result, including [1], [3], and [4]. Recently, Carlet [2]
has proved a similar result for linear codes of constant Lee weight over
Z=(4), indeed, over any Z=(2m).

In this extended abstract we generalize the approach of [4]. While
more complicated than Carlet's proof, our approach has the potential
to apply to a wide class of weight functions over any �nite commutative
chain ring.

For the purposes of this extended abstract, we will discuss codes
over rings of the form Z=(p2), p prime. In the case of Z=(4), we recover
Carlet's result as Theorem 6. For p odd, we show in Theorem 11 that
very few constant weight codes exist.
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1. Linear codes as modules

Throughout this extended abstract, the ground ring will be R =
Z=(p2), p prime. It will be convenient to view Z=(p2) as the set

Z=(p2) = ft 2 Z : �p2=2 < t � p2=2g:(1)

Only for p2 = 4 is equality possible in t � p2=2. A linear code C of
length n is a submodule of Rn.

The Lee weight w(x) of any element x = (x1; : : : ; xn) 2 Rn is de�ned
to be

w(x) =
nX
i=1

axi
;(2)

where at = jtj, with t 2 R, as in (1). Similarly, the Euclidean weight

uses at = jtj2. We will denote both types of weight by w(x); the context
will make clear which is being discussed.

We wish to determine the linear codes of constant weight, i.e., codes
for which there exists L > 0 with w(x) = L for all nonzero x 2 C. As
above, w(x) refers to a �xed choice of either Lee or Euclidean weight.

Observe that reduction mod p makes Z=(p) a module over R =
Z=(p2).

Proposition 1. Any linear code C is isomorphic, as an R-module,

to a direct sum

C �= (Z=(p))l1 �
�
Z=(p2)

�l2 :(3)

A linear automorphism of C is any R-homomorphism f : C ! C
which is invertible. Note that this de�nition does not involve the weight
function w, so that f need not be a code automorphism. However,
if C has constant weight, then any linear automorphism f is a code
automorphism. Denote the group of all linear automorphisms of C by
Aut(C).

Theorem 2. For C as in (3), Aut(C) consists of all equivalence

classes of matrices over R of the form

A =

�
M N
pP Q

�
;

where M and Q are invertible. Two such matrices A, A0 are equivalent

if M �M 0 mod p and N � N 0 mod p.
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2. Orbit structures

The linear automorphism group Aut(C) acts on C and on C] =
HomR(C;R), the linear dual of C. Our main interest is the action on
C]. However, C] �= C, so we will work directly with the action on C.

In the next theorem, we will denote elements of C as pairs x =
(x(1); x(2)), where x(i) 2 Z=(pi)li , as in (3). An asterisk � means the
entry can assume any value; p� means that every component of the
entry is a multiple of p; u means that at least one component of the
entry is a unit. We write e for the tuple e = (1; 0; : : : ; 0).

Theorem 3. The orbits of Aut(C) on C are as in Table 1.

Orbit Representative Size
(�; u) (0; e) pl1+l2(pl2 � 1)
(u; p�) (e; 0) (pl1 � 1)pl2

(0; pu) (0; pe) pl2 � 1
(0; 0) (0; 0) 1

Table 1. Orbits of Aut(C) on C.

3. Constant weight codes

A linear code C � Rn can be viewed as an abstract R-module as
in (3), equipped with an embedding in Rn. The embedding is given by
n coordinate functionals �1; : : : ; �n 2 C]. If C has a generator matrix
G, then the columns of G are the values of the �i evaluated on a set of
generators for C.

The main restriction on constant weight codes is that entire orbits
of linear functionals must occur as coordinate functionals of C.

Theorem 4. Let C � Rn be a linear code of constant weight, either

Lee or Euclidean weight. If � 2 C] occurs as a coordinate functional of

C, then (up to � signs) every other linear functional � in the Aut(C)-
orbit of � also occurs as a coordinate functional of C.

Proof. Given � in the orbit of �, there exists some f 2 Aut(C)
carrying � to �. On the other hand, f preserves weight (i.e., w(f(x)) =
w(x), for all x 2 C), since C has constant weight. By the extension
theorem [5], [6], f extends to a signed permutation automorphism of
Rn. Thus �� is another coordinate functional of C.

A similar argument shows that �� and �� occur with the same
multiplicity.
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Remark 5. We caution the reader that Theorem 4 is a theorem
only to the extent that the extension theorem holds for Lee or Euclidean
weight. The extension theorem is not known for the general case of
R = Z=(pk). It holds for various small values of pk where the conditions
of [5] and [6] can be veri�ed by hand.

4. Classi�cation of constant weight codes: p = 2

A linear code of length n can always be viewed as a code of length
n + 1 by adding a zero entry, i.e., by enlarging the set of coordinate
functionals �1; : : : ; �n to include �n+1 = 0. We call a linear code non-

degenerate if it has no zero coordinate functionals.

Theorem 6 (Carlet [2]). Let C be a nondegenerate linear code of

constant Lee weight over R = Z=(4). Then C is equivalent to the

replication of a code D whose coordinate functionals consist of all the

nonzero linear functionals on D.

The linear codes C and D are isomorphic as R-modules, each of

cardinality 2l14l2 = 2l1+2l2. The code D has length jDj�1 = 2l1+2l2�1,
while the code C has length r(2l1+2l2 � 1), for some positive integer r.
Every nonzero element of D has Lee weight L = jDj = 2l1+2l2 , while
every nonzero element of C has Lee weight rL.

Let us clarify some terminology. In the context of Lee or Euclidean
weight, two linear codes of length n over R are equivalent if one can
be obtained from the other by a signed permutation automorphism of
Rn. This means the two codes have the same collections of coordinate
functionals, up to � signs. An r-fold replication of a code D of length
n is a new code of length rn having the same coordinate functionals as
D, but with each having multiplicity r.

Proof. By Theorem 4, entire orbits of linear functionals (up to
� signs) must occur in the collection of coordinate functionals of C.
Because C is nondegenerate, no zero functionals occur.

Referring to Table 1, let �, �, 
 denote the number of times the
orbits (�; u), (u; 2�), (0; 2u), modulo � signs (relevant for (�; u) only),
occur in the coordinate functionals of C.

For any x 2 Rn, let s1(x) = jfi : xi = �1gj and s2(x) = jfi : xi =
2gj. Then w(x) = s1(x) + 2s2(x). Note that w(2x) = 2s1(x).

Over R = Z=(4), any nonzero element of C has order 2 or 4. Sup-
pose x 2 C has order 4. A consequence of constant Lee weight is that
w(x) = w(2x). It then follows that s1(x) = 2s2(x). If y has order 2,
then s1(y) = 0, so that w(y) = 2s2(y). Because 2y = 0, there is no
additional restriction on w(y).
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Let x = (0; e) and y = (e; 0); x has order 4, while y has order 2. A
detailed examination of the orbits in Table 1 reveals that

s1(x) = 2l1+2l2�2�;

s2(x) = 2l1+l2�2(2l2�1 � 1)�+ (2l1 � 1)2l2�1� + 2l2�1
;

s2(y) = 2l1+l2�2(2l2 � 1)� + 2l1+l2�1�:

From the constant weight conditions w(x) = w(2x) = w(y), it
follows that s1(x) = 2s2(x) = s2(y). We then conclude that � = 
 and
� = 2� = 2
. Thus C is a �-fold replication of D. (Note that the orbit
(�; u) is e�ectively cut in half by the � sign restriction. Having � = 2�
restores the orbit to full size.)

Example 7. For l1 = l2 = 1, the smallest example occurs when
� = 2, � = 
 = 1. A generating matrix has the form

G =

�
0 2 0 2 2 2 0
1 1 1 1 0 2 2

�
:

The code has cardinality 8, length 7, and constant Lee weight 8.

Turn now to Euclidean weight, so that the weight function w has
a2 = 4, as in (2). An argument similar to that in the proof of Theorem 6
shows that � = 2� and 
 = (2l1+l2�2 + 1)�. This proves the next
theorem.

Theorem 8. For a �xed isomorphism type (3), there exists a linear

code D of constant Euclidean weight having minimal length. The code

D is unique up to equivalence. The cardinality of D is jDj = 2l14l2 =
2l1+2l2, and its length is 2l1+2l2 � 1 + 2l1+l2�2(2l2 � 1). Every nonzero

element of D has Euclidean weight L = 2jDj = 2l1+2l2+1.
Any nondegenerate linear code C of constant Euclidean weight and

having isomorphism type (3) is equivalent to an r-fold replication of D.

Example 9. If l1 = l2 = 1, then � = 
 = 2�. The smallest
example has � = 1, � = 
 = 2. A generating matrix has the form

G =

�
0 2 0 2 2 2 0 0
1 1 1 1 0 2 2 2

�
:

The code has cardinality 8, length 8, and constant Euclidean weight
16.

5. Classi�cation of constant weight codes: p odd

When the prime p is odd, there are several surprises. One technical
di�erence from the case of p = 2 is that x = �x implies x = 0 when p
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is odd. In contrast, x = �x implies x = 0 or 2 in Z=(4). This a�ects
the counting of orbits modulo � signs.

Throughout this section R = Z=(p2) with p an odd prime.

Proposition 10. A linear code has constant Lee weight over R if

and only if it has constant Euclidean weight. The ratio of the weights

is p2=3.

Theorem 11. Suppose C is a nondegenerate linear code over R of

constant Lee or Euclidean weight. Then the isomorphism type (3) of

C satis�es l2 = 0 or l1 + l2 � 2.
The code C is equivalent to an r-fold replication of a constant weight

code D whose properties are listed in Table 2. The codes C and D are

isomorphic as R-modules and of the same cardinality jCj = jDj =
pl1+2l2. The length and constant Lee weight of C are r times those of

D.

When l2 = 0, the coordinate functionals of D consist of all the

nonzero linear functionals on D, modulo � signs.

l1 l2 jDj Length Weight L
l1 0 pl1 (pl1 � 1)=2 pl1(p2 � 1)=8
0 1 p2 (p3 � 2p+ 1)=2 p3(p2 � 1)=8
1 1 p3 p(p2 � 1)=2 p3(p2 � 1)=8
0 2 p4 p2(p2 � 1)=2 p4(p2 � 1)=8

Table 2. Properties of constant weight code D.

Proof. We keep the notation from the proof of Theorem 6. If
l2 = 0, only orbit (u; p�) can occur. Then � = 
 = 0, and � is
arbitrary. When l2 > 0, the constant weight condition implies that

psp(x) = (p� 1)s1(x);

ps1(x) = sp(y):

The second condition occurs only when l1 > 0.
In terms of orbit contributions (� signs are now relevant for all

three types of orbits), we see that

s1(x) = pl1+2l2�2�;

sp(x) = (pl1+2l2�2 � pl1+l2�1)� + (pl1+l2�1 � pl2�1)� + pl2�1
;

sp(y) = (pl1+2l2�1 � pl1+l2�1)� + pl1+l2�1�:
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From the condition ps1(x) = sp(y) it follows that � = �. From
psp(x) = (p� 1)s1(x) we obtain

(pl1+l2�2 � 1)� + 
 = 0:

Since �; 
 � 0, there are only zero solutions once l1 + l2 > 2.
The reader may verify the other claims and cases.

Example 12. Let l1 = 2, l2 = 0. Then � = 
 = 0, with � arbi-
trary. The shortest example has � = 1. Over R = Z=(9), a generating
matrix has the form

G =

�
3 3 3 0
0 3 �3 3

�
:

The code has cardinality 9, length 4, constant Lee weight 9, and con-
stant Euclidean weight 27.

Over R = Z=(25), a generating matrix has the form

G =

�
5 5 5 5 5 10 10 10 10 10 0 0
0 5 10 �10 �5 0 5 10 �10 �5 5 10

�
:

The code has cardinality 25, length 12, constant Lee weight 75, and
constant Euclidean weight 625.

Example 13. Let l1 = 0, l2 = 1. Then � = 0 and (p� 1)� = p
.
The shortest example has � = p, 
 = p � 1. Over R = Z=(9), a
generating matrix has the form

G =
�
1 2 4 1 2 4 1 2 4 3 3

�
:

The code has cardinality 9, length 11, constant Lee weight 27, and
constant Euclidean weight 81.

Over R = Z=(25), a generating matrix G has one row, consisting of
5 copies of

1 2 3 4 6 7 8 9 11 12

concatenated with 4 copies of

5 10:

The code has cardinality 25, length 58, constant Lee weight 375, and
constant Euclidean weight 3125.

Example 14. Let l1 = 1, l2 = 1. Then 
 = 0 and � = �. The
shortest example has � = � = 1. Over R = Z=(9), a generating matrix
has the form

G =

�
0 3 �3 0 3 �3 0 3 �3 3 3 3
1 1 1 2 2 2 4 4 4 0 3 �3

�
:
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The code has cardinality 27, length 12, constant Lee weight 27, and
constant Euclidean weight 81.

Example 15. Let l1 = 0, l2 = 2. Then � = 
 = 0, with � arbi-
trary. The shortest example has � = 1. Over R = Z=(9), a generating
matrix has the form

G =

�
1 2 4 0 0 0 3 3 3 �3 �3 �3
� � � 1 2 4 1 2 4 1 2 4

�
;

where � indicates 9 entries, running over the elements of Z=(9). The
code has cardinality 81, length 36, constant Lee weight 81, and constant
Euclidean weight 243.

6. Possible generalizations

The major ideas in this extended abstract generalize to any �nite
commutative chain ring (i.e., local, with principal ideals). However,
there are serious technical and notational di�culties to be overcome
in order to understand the orbit structure of Aut(C) on C and to
manipulate the equations arising from the constant weight condition.
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