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Part 1. Preliminaries

We begin by discussing characters of finite abelian groups and of
finite rings.

1. Characters

Throughout this section G is a finite abelian group under addition.
A character of G is a group homomorphism π : G→ C×, where C× is
the multiplicative group of nonzero complex numbers.

More generally, one could allow G to be a commutative topological
group, and define characters to be the continuous group homomor-
phisms π : G → C×. By endowing a finite abelian group with the
discrete topology, every function from G is continuous, and we recover
the original definition. The character theory for locally compact, sep-
arable, abelian groups was developed by Pontryagin [33], [34].

1.1. Basic results. Denote by Ĝ = HomZ(G,C×) set of all characters

of G; Ĝ is a finite abelian group under pointwise multiplication of
functions: (πθ)(x) := π(x)θ(x), for x ∈ G. The identity element of the

group Ĝ is the principal character π0 = 1, with π0(x) = 1 for all x ∈ G.
Let F (G,C) = {f : G → C} be the set of all functions from G to

the complex numbers C; F (G,C) is a vector space over the complex
numbers of dimension |G|. For f1, f2 ∈ F (G,C), define

(1.1.1) 〈f1, f2〉 =
1

|G|
∑
x∈G

f1(x)f̄2(x).

Then 〈·, ·〉 is a positive definite Hermitian inner product on F (G,C).
The following statement of basic results is left as an exercise for the

reader (see, for example, [35]).

Proposition 1.1.1. Let G be a finite abelian group, with character

group Ĝ. Then:

(1) Ĝ is isomorphic to G, but not naturally so;

(2) G is naturally isomorphic to the double character group (Ĝ)̂ ;

(3) |Ĝ| = |G|;
(4) (G1 ×G2)̂ ∼= Ĝ1 × Ĝ2, for finite abelian groups G1, G2;

(5)
∑

x∈G π(x) =

{
|G|, π = 1,

0, π 6= 1;
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(6)
∑

π∈ bG π(x) =

{
|G|, x = 0,

0, x 6= 0.

(7) The characters of G form an orthonormal basis of F (G,C) with
respect to the inner product 〈, 〉.

1.2. Additive form of characters. It will sometimes be convenient
to view the character group Ĝ additively. Given a finite abelian group
G, define its dual abelian group by HomZ(G,Q/Z). The dual abelian
group is written additively, and its identity element is written 0, which
is the zero homomorphism from G to Q/Z. The complex exponential
function defines a group homomorphism Q/Z → C×, x 7→ exp(2πix),
which is injective and whose image is the subgroup of elements of fi-
nite order in C×. The complex exponential in turn induces a group
homomorphism

(1.2.1) HomZ(G,Q/Z)→ Ĝ = HomZ(G,C×).

When G is finite, the mapping (1.2.1) is an isomorphism.
Because there will be situations where it is convenient to write char-

acters multiplicatively and other situations where it is convenient to
write characters additively, we adopt the following convention.

Notational Convention. Characters written in multiplicative form, i.e.,
characters viewed as elements of HomZ(−,C×) will be denoted by the
“standard” Greek letters π, θ, φ, and ρ. Characters written in addi-
tive form, i.e., characters viewed as elements of HomZ(−,Q/Z) will be
denoted by the corresponding “variant” Greek letters $, ϑ, ϕ, and %,
so that π = exp(2πi$), θ = exp(2πiϑ), etc.

The ability to write characters additively will become very useful
when G has the additional structure of (the underlying abelian group
of) a module over a ring (subsection 1.3).

We warn the reader that in the last several results in Proposition 1.1.1,
the sums (or linear independence) take place in (or over) the complex
numbers. These results must be written with the characters in multi-
plicative form.

Let H ⊂ G be a subgroup, and define the annihilator (Ĝ : H) =

{$ ∈ Ĝ : $(h) = 0, for all h ∈ H}. Then (Ĝ : H) is isomorphic to

the character group of G/H, so that |(Ĝ : H)| = |G|/|H|.
Proposition 1.2.1. Let H be a subgroup of G with the property that

H ⊂ ker$ for all characters $ ∈ Ĝ. Then H = 0.

Proof. The hypothesis implies that (Ĝ : H) = Ĝ. Calculating |H| = 1,
we conclude that H = 0. �



4 JAY A. WOOD

1.3. Character modules. If the finite abelian group G is the additive

group of a module M over a ring R, then the character group M̂ inherits
an R-module structure. In this process, sides get reversed; i.e., if M is

a left R-module, then M̂ is a right R-module, and vice versa.
Explicitly, if M is a left R-module, then the right R-module structure

of M̂ is defined by

($r)(m) := $(rm), $ ∈ M̂, r ∈ R,m ∈M.

Similarly, if M is a right R-module, then the left R-module structure

of M̂ is given by

(r$)(m) := $(mr), $ ∈ M̂, r ∈ R,m ∈M.

Remark 1.3.1. When M̂ is written in multiplicative form, one may see
the scalar multiplication for the module structure written in exponen-
tial form (for example, in [40] and in the proof of Theorem 3.2.1):

πr(m) := π(rm), π ∈ M̂, r ∈ R,m ∈M,

when M is a left R-module and M̂ is a right R-module, and

rπ(m) := π(mr), π ∈ M̂, r ∈ R,m ∈M,

when M is a right R-module and M̂ is a left R-module. The reader
will verify such formulas as (πr)s = πrs.

Lemma 1.3.2. Let R be a finite ring, with R̂ its character bimodule.

If rR̂ = 0 (resp., R̂r = 0), then r = 0.

Proof. Suppose rR̂ = 0. For any $ ∈ R̂ and x ∈ R, we have 0 =

r$(x) = $(xr). ThusRr ⊂ ker$, for all$ ∈ R̂. By Proposition 1.2.1,
Rr = 0, so that r = 0. �

2. Finite rings

Throughout this section R will be a finite associative ring with 1.
References for this section include [24] and [25].

2.1. Basic definitions. The (Jacobson) radical rad(R) of a finite ring
R is the intersection of all the maximal left ideals of R. The radical
is also the intersection of all the maximal right ideals of R, and the
radical is a two-sided ideal of R.

A nonzero module over R is simple if it has no nontrivial submodules.
Given any left R-module M , the socle soc(M) is the sum of all the
simple submodules of M .
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2.2. Structure of finite rings. If R is a finite ring, then, as rings

(2.2.1) R/ rad(R) ∼= Mµ1(Fq1)⊕ · · · ⊕Mµn(Fqn),

for some nonnegative integers n, µ1, . . . , µn and prime powers q1, . . . , qn,
where Mm(Fq) is the ring of all m×m matrices over the finite field Fq
of q elements. Indeed, being semisimple, R/ rad(R) is a direct sum of
full matrix rings over division rings by a theorem of Wedderburn-Artin
[25, 3.5]. Since R is finite, the division rings must also be finite, hence
commutative by another theorem of Wedderburn [25, 13.1].

Recall that the matrix ring Mm(F) has a standard representation on
the Mm(F)-module Mm,1(F) of all m × 1 matrices over Fq, via matrix
multiplication. As a left module over itself,

Mm(F)Mm(F) ∼= mMm,1(F).

Consequently, as a left R-module, it follows from (2.2.1) that

(2.2.2) R (R/ rad(R)) ∼= µ1T1 ⊕ · · · ⊕ µnTn,
where Ti denotes the pullback to R via (2.2.1) of the standard left
Mµi

(Fqi)-module Mµi,1(Fqi) of all µi × 1 matrices over Fqi . The simple
left R-modules Ti, i = 1, 2, . . . , n, form the complete list of all simple
left R-modules.

2.3. Duality. We provide a few key properties of character modules.
Given a finite left (right) R-module M , recall that the character

module M̂ = HomZ(M,Q/Z) is a right (left) R-module.
A left module M over a ring R is injective if, for every pair of left

R-modules B1 ⊂ B2 and every R-linear mapping f : B1 → M , the
mapping f extends to an R-linear mapping f̃ : B2 →M .

The next several propositions are exercises for the reader (cf. [40,
Sections 2–3]).

Proposition 2.3.1. The mapping ̂ taking M to M̂ is a contravariant
functor from the category of finitely generated left (right) R-modules
to the category of finitely generated right (left) R-modules.

Lemma 2.3.2. The abelian group Q/Z is divisible; i.e., m(Q/Z) =
Q/Z for all nonzero integers m. Moreover, Q/Z is an injective Z-
module.

Proof. See [10, 57.5]. �

Proposition 2.3.3. The functor ̂ is an exact functor; i.e., ̂ takes
short exact sequences of modules to short exact sequences of modules.

Proof. Use Q/Z injective. �
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Corollary 2.3.4. When M = R itself, R̂ is an injective R-module.

Proof. An exact functor takes projective modules, in particular, free
modules, to injective modules. �

Proposition 2.3.5. Let MR be any finite right R-module. Then

(M/M rad(R))̂ = soc(M̂).

Proof. Being an exact functor, the character functor takes direct sums
to direct sums and simple modules to simple modules.

Begin with the short exact sequence

0→M rad(R)→M →M/M rad(R)→ 0.

Now apply the character functor, yielding the short exact sequence

0→ (M/M rad(R))̂ → M̂ → (M rad(R))̂ → 0.

Because M/M rad(R) is a finite sum of simple modules, the same is

true of (M/M rad(R))̂ . This implies that (M/M rad(R))̂ ⊂ soc(M̂).
Conversely, consider the short exact sequence

0→ soc(M̂)→ M̂ → M̂/ soc(M̂)→ 0.

After applying the character functor, we obtain a surjective map

(2.3.1) M → (soc(M̂))̂ → 0.

Because soc(M̂) is a finite sum of simple modules, so is (soc(M̂))̂ .
Because the radical annihilates any simple module, M rad(R) is in the
kernel of the mapping (2.3.1), and thus the mapping (2.3.1) factors
through

M/M rad(R)→ (soc(M̂))̂ → 0.

Applying the character functor one more time yields

0→ soc(M̂)→ (M/M rad(R))̂ .
Thus soc(M̂) ⊂ (M/M rad(R))̂ , and equality holds. �

Part 2. The extension theorem

3. Linear codes over modules; sufficient conditions for
the extension theorem

3.1. Basic definitions. Let R be a finite ring with 1, and let A be a
finite left R-module. The module A will serve as the alphabet for the
linear codes we discuss. We begin with several standard definitions.
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A linear code of length n over the alphabet A is a left R-submodule
C ⊂ An. The idea of using a module A as the alphabet for linear codes
goes back to [23].

A monomial transformation of An is an R-linear automorphism T of
An of the form

(a1, . . . , an)T = (aσ(1)τ1, . . . , aσ(n)τn), (a1, . . . , an) ∈ An,
where σ is a permutation of {1, 2, . . . , n} and τ1, . . . , τn ∈ Aut(A) are
automorphisms of A (being written on the right, as is T ). If the auto-
mophisms τi are constrained to lie in some subgroup G ⊂ Aut(A), we
say that T is a G-monomial transformation of An.

A weight on the alphabet A is any function w : A → Q with the
property that w(0) = 0. Any such weight extends to a weight w :
An → Q by w(a1, . . . , an) =

∑
w(ai).

Given a weight w : A→ Q, define the left and right symmetry groups
of w by:

Gl := {u ∈ U(R) : w(ua) = w(a), for all a ∈ A},(3.1.1)

Gr := {τ ∈ Aut(A) : w(aτ) = w(a), for all a ∈ A}.(3.1.2)

Here, U(R) denotes the group of units of the ring R.
Given a weight w : A → Q, we say that a function f : An → An

preserves w if w(xf) = w(x), for all x ∈ An. Observe that a Gr-
monomial transformation preserves w.

Assume that the alphabet A is equipped with a weight w, whose
symmetry groups are Gl and Gr. Suppose that C1, C2 ⊂ An are two
linear codes of length n over the alphabet A. If there exists a Gr-
monomial transformation T of An such that C1T = C2, then the re-
striction T : C1 → C2 is an R-linear isomorphism that preserves the
weight w. We describe the converse as a property—the extension prop-
erty.

Definition 3.1.1. The alphabet A has the extension property (EP)
with respect to the weight w if the following condition holds:

For any two linear codes C1, C2 ⊂ An, if f : C1 → C2 is an R-
linear isomorphism that preserves the weight w, then f extends to a
Gr-monomial transformation of An.

3.2. The character module as alphabet: the case of Hamming
weight. Any alphabet A can be equipped with the Hamming weight
wt : A → Q, where wt(0) = 0 and wt(a) = 1 for all nonzero a ∈ A.
For x = (x1, . . . , xn) ∈ An, observe that wt(x) equals the number of
nonzero entries of the vector x. The symmetry groups of the Hamming
weight are as large as possible: Gl = U(R), Gr = Aut(A).
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An important class of alphabets for which the extension property
holds is the class of Frobenius bimodules of finite rings. This result
is due to Greferath, Nechaev, and Wisbauer in [17], and we provide a
proof similar to the one for Frobenius rings in [40, Theorem 6.3] (which,
in turn, generalized a proof over finite fields in [38, Theorem 1]). This
result provides the backbone for the proof of Theorem 3.3.4.

A Frobenius bimodule A = RAR is an (R,R)-bimodule such that

RA ∼= RR̂ and AR ∼= R̂R. Of course, the character bimodule RR̂R is a
Frobenius bimodule, but a Frobenius bimodule need not be isomorphic,

as a bimodule, to RR̂R.

Theorem 3.2.1 ([17, Theorem 4.5]). Let R be a finite ring and A be
a Frobenius bimodule over R. Then A has the extension property with
respect to Hamming weight.

Before we begin the proof, we prove several preliminary results about

the structure of Â, the character bimodule of a Frobenius bimodule A.

Lemma 3.2.2. If A is a Frobenius bimodule, then its character bimod-

ule Â satisfies

RÂ ∼= RR and ÂR ∼= RR.

Proof. Dualize the definition of Frobenius bimodule. �

Given that RÂ ∼= RR and ÂR ∼= RR for a Frobenius bimodule A,

recall that a character % ∈ Â is a left generator (resp., right generator)

for Â if •% : RR → RÂ, r 7→ r% (resp., %• : RR → ÂR, r 7→ %r) is an
isomorphism.

The first lemma is a simple rephrasing of the definition of a generator.

Lemma 3.2.3. A character % ∈ Â is a left generator (resp., right
generator) if and only if ker % ⊂ A contains no nonzero left (resp.,
right) R-submodule of A.

Proof. We will prove the left case, with the right case being similar.

By definition, % ∈ Â is a left generator if and only if •% : RR → RÂ,
r 7→ r%, is an isomorphism. Because R and A are finite, •% is an
isomorphism if and only if •% is injective, which happens if and only if
ker(•%) = 0.

For r ∈ R, observe that r ∈ ker(•%) if and only if 0 = r%(a) = %(ar)
for all a ∈ A. This latter occurs if and only if the left R-submodule
Ar ⊂ ker %. Lemma 1.3.2 implies that Ar = 0 if and only if r = 0, and
the result now follows. �

The next lemma reverses the sides.
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Lemma 3.2.4. If % is a left generator (resp., right generator) for Â,
then ker % contains no nonzero right (resp., left) R-submodule of A.

Proof. We prove the left generator case. The other case follows by a
symmetric argument.

Suppose % is a left generator of Â, and suppose BR ⊂ AR is a right

submodule such that B ⊂ ker %. Take any character $ ∈ Â. Because

% is a left generator of Â, $ = s% for some s ∈ R. For any b ∈ B, we
calculate that $(b) = (s%)(b) = %(bs) = 0, since B is a right submodule

and B ⊂ ker %. Thus B ⊂ ker$, for all $ ∈ Â. By Proposition 1.2.1,
B = 0. �

Corollary 3.2.5. Suppose A is a Frobenius bimodule. Then a charac-

ter % ∈ Â is a left generator for Â if and only if it is a right generator

for Â.

Proof. Follows immediately from Lemmas 3.2.3 and 3.2.4. �

Proof of Theorem 3.2.1, following [40, Theorem 6.3]. Let M = RM be
the common underlying module of the isomorphic codes C1, C2 ⊂ An.
Let the two embeddings of M into An be given by coordinate function-
als λ1, . . . , λn (for C1) and ν1, . . . , νn (for C2) in HomR(M,A). (Because
M is a left module, the coordinate functionals will be written on the
right: xλ ∈ A, for x ∈ M and λ ∈ HomR(M,A). Linearity is then
expressed by (rm)λ = r(mλ). The right R-module structure on A
induces a right R-module structure on HomR(M,A).)

Because Hamming weight is preserved, Proposition 1.1.1 implies that

(3.2.1)
n∑
i=1

∑
π∈ bA

π(xλi) =
n∑
j=1

∑
θ∈ bA

θ(xνj), x ∈M.

Please remember our notational convention that π, θ are characters in
multiplicative form.

Let % be a left generator of Â. Then % is also a right generator of Â,
by Corollary 3.2.5. Remember that ρ = exp(2πi%) is the multiplicative
form of %. We can re-write (3.2.1) as

n∑
i=1

∑
r∈R

rρ(xλi) =
n∑
j=1

∑
s∈R

sρ(xνj), x ∈M.

Using the R-module structures on Â and HomR(M,A), we have

(3.2.2)
n∑
i=1

∑
r∈R

ρ(xλir) =
n∑
j=1

∑
s∈R

ρ(xνjs), x ∈M.
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This is an equation of characters on M .
The right R-module HomR(M,A) admits a reflexive, transitive rela-

tion � defined by λ � ν when λ = νr for some r ∈ R. It follows from
a result of Bass [4, Lemma 6.4] that λ � ν and ν � λ imply λ = νu for
some u ∈ U(R). Then � induces a partial ordering on the set of right
U(R)-orbits in HomR(M,A).

Among the finite number of elements λ1, . . . , λn, ν1, . . . , νn of (the
set of right U(R)-orbits in) HomR(M,A), choose one that is maximal
for the partial order �. Without loss of generality, call this maximal
element λ1. Now consider the term ρ(xλ1), i.e., r = 1, on the left
side of (3.2.2). By the linear independence of characters on M , there
exists an index j = σ(1) and element s ∈ R with ρ(xλ1) = ρ(xνjs)
for all x ∈ M . This implies that im(λ1 − νjs) ⊂ ker %. Observe that
im(λ1− νjs) is a left R-submodule of A. Because % is a right generator

for Â, Lemma 3.2.4 implies im(λ1 − νjs) = 0, so that λ1 = νjs. This
implies that λ1 � νj. But λ1 was chosen to be a maximal element under
�, so that λ1 and νj are in the same right U(R)-orbit, i.e., λ1 = νju1

for some unit u1 in R.
Re-indexing (s = u1r) shows that∑

r∈R

ρ(xλ1r) =
∑
r∈R

ρ(xνju1r) =
∑
s∈R

ρ(xνjs), x ∈M,

thereby allowing us to reduce by one the size of the outer summations
in (3.2.2). Proceeding by induction, we produce a permutation σ and
units u1, . . . , un in R with λi = νσ(i)ui, as desired. �

3.3. Sufficient conditions: the case of Hamming weight. Before
stating sufficient conditions for the alphabet A to have the extension
property with respect to the Hamming weight wt, we provide one more
definition from module theory.

A left module M over a ring R is pseudo-injective if, for every left R-
submodule B ⊂ M and every injective R-linear mapping f : B → M ,
the mapping f extends to an R-linear mapping f̃ : M →M .

Observe that the definition of pseudo-injectivity is very close to that
of the extension property for linear codes of length 1. In fact, these
two concepts are equivalent, as the following result of Dinh and López-
Permouth demonstrates.

Proposition 3.3.1 ([12, Proposition 3.2]). The alphabet A has the ex-
tension property for linear codes of length 1 with respect to Hamming
weight (i.e., if C1, C2 ⊂ A and if f : C1 → C2 is an R-linear iso-
morphism that preserves the Hamming weight wt, then f extends to an
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automorphism of A) if and only if the alphabet A is a pseudo-injective
R-module.

Proof, following [12]. Observe that if an R-linear mapping f preserves
the Hamming weight wt, then f is injective. Thus, the extension prop-
erty for length one codes is equivalent to saying that every injective
map f : B → A of a submodule B ⊂ A extends to an automorphism
of A. It is evident that this property implies that the module A is
pseudo-injective.

For the converse, suppose that A is pseudo-injective. Let B ⊂ A be a
submodule and let f : B → A be an injective R-linear homomorphism.
We must show that f extends to an automorphism of A.

Case 1: when soc(B) = soc(A). Because A is pseudo-injective, f

extends to an R-linear homomorphism f̃ : A → A. Consider the sub-
module ker(f̃) ⊂ A. Observe that soc(ker(f̃)) ⊂ soc(A) = soc(B) ⊂ B.

But ker(f̃)∩B = ker(f) = 0, since f is injective. Thus soc(ker(f̃)) = 0,

so that ker(f̃) = 0 as well.
Case 2: when soc(B) 6= soc(A). There exists a submodule M ⊂

soc(A) so that soc(B) ⊕M = soc(A). Observe that soc(B) ∩M = 0
and that soc(B⊕M) = soc(A). We now show that f extends injectively
to B⊕M . Notice that soc(B)f is properly contained in soc(A), so there
exists a submodule N ⊂ soc(A) with soc(B)f ⊕N = soc(A). Putting
these together, we see that soc(B)⊕M = soc(A) = soc(B)f ⊕N and
soc(B) ∼= soc(B)f . This implies that M ∼= N , since soc(A) is a semi-
simple module. Let g : M → N be an isomorphism. Extend f : B → A
to h : B ⊕M → A by (b + m)h = bf + mg. One verifies that h is
injective. Because soc(B ⊕M) = soc(A), case 1 implies that h (and
hence f) extends to an automorphism of A. �

The other condition that arises in the statement of the extension
theorem is soc(A) being a cyclic module, i.e., there is a surjective R-
linear homomorphism R→ soc(A).

Because soc(A) is a sum of simple R-modules, we can write

(3.3.1) soc(A) ∼= s1T1 ⊕ · · · ⊕ snTn,
where the Ti are the simple R-modules from (2.2.2).

Proposition 3.3.2. The socle soc(A) is a cyclic module if and only if
si ≤ µi, for i = 1, 2, . . . , n, where the µi are defined in (2.2.1).

Proof. This is an exercise for the reader. �

Proposition 3.3.3. The socle soc(A) is a cyclic module if and only if

A can be embedded into RR̂.
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Proof. There is a right module counterpart to (2.2.2), yielding simple
right R-modules S1, . . . , Sn that are the counterparts to the simple left

R-modules T1, . . . , Tn. A calculation shows that Ŝi = Ti. By applying
Proposition 2.3.5 to RR, it then follows that

soc(RR̂) ∼= ((R/ rad(R))R)̂ ∼= µ1T1 ⊕ · · · ⊕ µnTn.

If A ⊂ RR̂, then soc(A) ⊂ soc(RR̂). But this implies that si ≤ µi for
all i, so that soc(A) is cyclic by Proposition 3.3.2.

Conversely, if soc(A) is cyclic, then soc(A) can be embedded in

soc(RR̂), via some homomorphism f . View f : soc(A) → RR̂. Be-
cause the character module of a ring is always an injective module
(Corollary 2.3.4), the homomorphism f extends to a homomorphism

F : A→ RR̂. It remains to show that F is injective.
Observe that soc(kerF ) = kerF ∩ soc(A) = ker f = 0, because f is

injective. Because soc(kerF ) = 0, we conclude that kerF = 0, and F
is injective. �

Theorem 3.3.4. An alphabet A has the extension property with respect
to Hamming weight if:

(1) A is pseudo-injective, and
(2) soc(A) is cyclic.

Proof. Let C1, C2 ⊂ An be two R-linear codes, and suppose f : C1 →
C2 is an R-linear isomorphism that preserves Hamming weight. By
virtue of the hypothesis that soc(A) is cyclic, Proposition 3.3.3 implies

that A embeds in RR̂. Using this embedding, we may view C1, C2 ⊂
R̂n as R-linear codes over the alphabet RR̂. Note that the Hamming
weights of elements of C1, C2 remain the same, whether they are viewed

as codes over A or as codes over R̂.
With the standard Frobenius bimodule structure on R̂, Theorem 3.2.1

implies that the isomorphism f : C1 → C2 extends to a monomial

transformation F : R̂n → R̂n. Explicitly,

(x1, . . . , xn)F = (xσ(1)u1, . . . , xσ(n)un), (x1, . . . , xn) ∈ R̂n,

where σ is a permutation of {1, 2, . . . , n} and ui ∈ U(R) = Aut(RR̂).
Remember that C1F = C2.

Let P (resp., D) be the permutation (resp., diagonal) portion of the
monomial transformation F ; i.e.,

(x1, . . . , xn)P = (xσ(1), . . . , xσ(n)), (x1, . . . , xn) ∈ R̂n,

(x1, . . . , xn)D = (x1u1, . . . , xnun), (x1, . . . , xn) ∈ R̂n.
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Then xF = xPD for x ∈ R̂n.
Let C3 = C1P ⊂ An ⊂ R̂n, and observe that D is an R-linear iso-

morphism from C3 to C2 that preserves Hamming weight. We examine
the individual components of the diagonal transformation D.

For each coordinate i = 1, 2, . . . , n, project C3, C2 to codes C
(i)
3 , C

(i)
2 ⊂

A ⊂ R̂. Observe that xD(i) := xui, x ∈ R̂, is an R-linear isomorphism

taking C
(i)
3 to C

(i)
2 that preserves Hamming weight. By the hypothesis

that the alphabet A is pseudo-injective, Proposition 3.3.1 implies that

D(i) : C
(i)
3 → C

(i)
2 extends to an automorphism τi ∈ Aut(A). Using

these automorphisms, we build a monomial transformation F ′ of An:

(x1, . . . , xn)F ′ = (xσ(1)τ1, . . . , xσ(n)τn), (x1, . . . , xn) ∈ An,
that maps C1 to C2, as desired. �

3.4. Sufficient conditions: the case of rings. In this subsection
we address the case where the alphabet A is the ground ring R itself.

A ring R is a Frobenius ring [24, Theorem 16.14] if

soc(RR) ∼= R(R/ rad(R)) and soc(RR) ∼= (R/ rad(R))R.

In fact, for finite rings, either one of these isomorphisms suffices, by a
result of Honold [21, Theorem 2].

Another characterization of finite Frobenius rings follows.

Theorem 3.4.1 ([40, Theorem 3.10]). A finite ring R is Frobenius if

and only if RRR is a Frobenius bimodule. In fact, RR̂ ∼= RR if and only

if R̂R
∼= RR.

The next theorem is now a direct corollary of Theorem 3.2.1.

Theorem 3.4.2 ([40, Theorem 6.3]). If R is a finite Frobenius ring,
then the alphabet A = R has the extension property with respect to
Hamming weight.

Remark 3.4.3. Theorem 3.4.2 also follows from Theorem 3.3.4. For
any finite ring R, the character module R̂ is injective, hence pseudo-

injective. Because RR ∼= RR̂, we see that a Frobenius ring is (pseudo-)
injective as a left R-module. By definition, a Frobenius ring satisfies
soc(RR) ∼= R(R/ rad(R)), so soc(RR) is cyclic, and Theorem 3.3.4 ap-
plies.

4. Necessary conditions for the extension theorem

The goal of this section is to prove converses for Theorems 3.4.2
and 3.3.4.



14 JAY A. WOOD

4.1. Statement of results. Here are the statements of the results.

Theorem 4.1.1 ([44, Theorem 2.3]). Let R be a finite ring. If the
alphabet A = R has the extension property with respect to Hamming
weight, then R is a Frobenius ring.

Theorem 4.1.2 ([44, Theorem 5.2], in part). If the alphabet A has the
extension property with respect to Hamming weight, then:

(1) A is pseudo-injective, and
(2) soc(A) is cyclic.

The key technical result from which Theorems 4.1.1 and 4.1.2 will
follow is:

Theorem 4.1.3 ([44, Theorem 4.1]). Let R = Mm(Fq) be the ring of
all m×m matrices over a finite field Fq, and let A = Mm,k(Fq) be the
left R-module of all m× k matrices over Fq.

If k > m, then the alphabet A does not have the extension property
with respect to Hamming weight.

Specifically, if k > m, there exist linear codes C+, C− ⊂ AN , N =∏k−1
i=1 (1+qi), and an R-linear isomorphism f : C+ → C− that preserves

Hamming weight, yet there is no monomial transformation extending
f because the code C+ has an identically zero component while the code
C− does not.

The proof of Theorem 4.1.3 will appear in subsection 4.2 below. The
proofs of Theorems 4.1.1 and 4.1.2 follow a strategy of Dinh and López-
Permouth [13] and will appear in subsection 4.3. The motivation for
the form of Theorem 4.1.3 will appear in subsection 5.7.

4.2. Proof of Theorem 4.1.3. Before we begin the proof of Theo-
rem 4.1.3, we include a brief description of q-binomial coefficients and
the Cauchy binomial theorem, which will be used in the proof.

The q-binomial coefficient (or Gaussian coefficient, Gaussian number
or Gaussian polynomial) is defined as[

k
l

]
q

=
(1− qk)(1− qk−1) · · · (1− qk−l+1)

(1− ql)(1− ql−1) · · · (1− q)
.

The following lemmas are well-known (see such sources as [1, Chapter
3] and [37, Chapter 24]). The first counts the number of row reduced
echelon matrices over Fq, and the second is the Cauchy binomial theo-
rem.

Lemma 4.2.1. The q-binomial coefficient [ kl ]q counts the number of

row (or column) reduced echelon matrices of length k over Fq of rank
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l (i.e., row reduced echelon matrices of size l × k of rank l, or column
reduced echelon matrices of size k × l of rank l).

Lemma 4.2.2 (Cauchy binomial theorem).

k−1∏
i=0

(
1 + xqi

)
=

k∑
j=0

[
k
j

]
q

q(
j
2)xj.

Proof of Theorem 4.1.3, following [44, Theorem 4.1]. We will construct

two linear codes C+ and C− in AN , N =
∏k−1

i=1 (1 + qi). The codes
will be constructed as the images of two R-linear homomorphisms
g+, g− : A→ AN .

We begin by describing two vectors v+, v− in Mk(Fq)N , i.e., v± will
be N -tuples of k × k matrices over Fq. The order of the entries in v±
will be irrelevant. The entries of v+ will consist of all column reduced
echelon matrices of size k×k over Fq of even rank, with the multiplicity

of the column reduced echelon matrix being q(
r
2), where r denotes the

rank of the matrix. In particular, the zero matrix occurs in v+ with
multiplicity one, as

(
0
2

)
= 0. The length L+ of v+ is given by

L+ =
k∑
r=0
r even

q(
r
2)
[
k
r

]
q

.

Similarly, the entries of v− will consist of all column reduced echelon

matrices of odd rank, also with multiplicity q(
r
2). (Note that

(
1
2

)
= 0.)

The length L− of v− is given by

L− =
k∑
r=1
r odd

q(
r
2)
[
k
r

]
q

.

Two applications of Lemma 4.2.2 with x = ±1 yield

L+ + L− =
k−1∏
i=0

(1 + qi) and L+ − L− = 0.

Since the i = 0 term in the product equals 2, we see that

L+ = L− =
k−1∏
i=1

(1 + qi) =: N,

so that v± have the same length N .
Define the R-linear homomorphisms g± : A → AN by Xg± = Xv±,

X ∈ A, where Xv± denotes entry-wise matrix multiplication. Define
two linear codes C± ⊂ AN by C± = Ag±.
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Claim 1: the Hamming weights of Xg± are equal; i.e., wt(Xg+) =
wt(Xg−), for all X ∈ A.

To show this, we consider ∆(X) = wt(Xg+)− wt(Xg−). Then

∆(X) =
k∑
r=0
r even

q(
r
2)
∑
λ CRE
rank r

δ(Xλ)−
k∑
r=1
r odd

q(
r
2)
∑
λ CRE
rank r

δ(Xλ),

where δ(Y ) = 1 if Y is nonzero, and δ(Y ) = 0 if Y = 0. In the inner
summations, λ varies over all column reduced echelon (CRE, for short)
matrices of size k × k over Fq of rank r. Thus

∆(X) =
k∑
r=0

(−1)rq(
r
2)
∑
λ CRE
rank r

δ(Xλ).

Sub-claim: The value of ∆(X) depends only on the rank of X.
Suppose X has rank s, 1 ≤ s ≤ m. Then

X = P

(
Is 0
0 0

)
Q,

for some P ∈ GL(m,Fq) and Q ∈ GL(k,Fq). For convenience, we
denote the middle factor by I ′s, so that X = PI ′sQ.

For any Y ∈ A, P ∈ GL(m,Fq), and Q ∈ GL(k,Fq), observe that
δ(PY ) = δ(Y ) and δ(Y Q) = δ(Y ), because P and Q are invertible.
Thus, for X = PI ′sQ, we have ∆(X) = ∆(I ′sQ).

The expression for ∆(I ′sQ) contains the inner summation∑
λ CRE
rank r

δ(I ′sQλ).

Note that as λ varies over the column reduced echelon matrices of a
fixed rank r, Qλ varies over the column reduced echelon equivalence
classes of rank r. Thus, by a re-indexing argument, we have∑

λ CRE
rank r

δ(I ′sQλ) =
∑

λ′ CRE
rank r

δ(I ′sλ
′Q′) =

∑
λ′ CRE
rank r

δ(I ′sλ
′).

Note that Q′ depends on λ, but, being invertible, it does not affect the
value of δ. It is now apparent that ∆(X) = ∆(I ′s), as (sub-)claimed.

To prove the original claim, we still need to show that ∆(I ′s) = 0 for
all s. To this end, we examine δ(I ′sλ) in detail, where λ is a column
reduced echelon matrix of rank r and size k × k. The rows of the
product I ′sλ consist of the first s rows of λ followed by k − s rows of
zeros. The value δ(I ′sλ) = 0 when I ′sλ = 0. This happens when the
first s rows of λ are zero. But λ is a column reduced echelon matrix
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of rank r, so there are [ k−sr ]q such column reduced echelon matrices
of rank r whose first s rows are zero. Note that this number vanishes
when r > k − s.

In the summation ∑
λ CRE
rank r

δ(I ′sλ)

there are [ kr ]q terms, [ k−sr ]q of which are zero and the rest equal 1. Thus

∆(I ′s) =
k∑
r=1

(−1)rq(
r
2)

{[
k
r

]
q

−
[
k − s
r

]
q

}
.

By two applications of Lemma 4.2.2, one shows that ∆(I ′s) = 0, for
all s, and hence ∆(X) = 0 for all X ∈ A, as claimed. (Note that the
hypothesis k > m guarantees that the summation involving [ k−sr ]q is

nontrivial. If k ≤ m, one can show that ∆(I ′k) = −1.)
Claim 2: the mapping f : C+ → C− defined by g− = g+ ◦ f is a

well-defined R-linear isomorphism that preserves Hamming weight.
Note that the common value

wt(Xg+) = wt(Xg−) =
k∑
r=1
r odd

q(
r
2)
∑
λ CRE
rank r

δ(Xλ)

is the sum of nonnegative terms. Also, if X 6= 0, then not all of the
terms δ(Xλ) vanish when rk(λ) = 1. Thus, for X 6= 0, the common
value wt(Xg+) = wt(Xg−) is positive. In particular, for X 6= 0, Xg+

and Xg− are nonzero. Thus, g+, g− : A → AN are injective R-linear
homomorphisms. By defining f : C+ → C− via g− = g+ ◦ f , the claim
is now apparent.

Claim 3: the mapping f : C+ → C− does not extend to a monomial
transformation.

Because the vector v+ contains a zero matrix in one component,
that component of Xg+ vanishes for every X ∈ A. On the other hand,
no single fixed component of Xg− vanishes for every X ∈ A. Since
monomial transformations preserve identically zero components, the
map f : C+ → C− cannot extend to a monomial transformation. �

4.3. The strategy of Dinh and López-Permouth and proofs of
necessary conditions. In this subsection, we prove Theorems 4.1.1
and 4.1.2 by following the strategy of Dinh and López-Permouth [13,
Theorem 6].
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The objective of Dinh and López-Permouth in [13, Theorem 6] “is to
provide a strategy” for reducing the proof of Theorem 4.1.1 to a non-
extension problem for linear codes defined over certain matrix modules.
Although originally stated for ring alphabets, their ideas, suitably mod-
ified, also work for module alphabets. In outline form, their strategy
has three parts. (1) If a finite ring is not Frobenius, show that its socle
contains a copy of a particular type of module defined over a matrix
ring. (2) Show that counter-examples to the extension property exist
in the context of linear codes defined over this particular matrix mod-
ule. (3) Show that the counter-examples over the matrix module pull
back to give counter-examples over the original ring. Points (1) and
(3) were already carried out in [13], while point (2) is Theorem 4.1.3.

The following theorem shows how points (2) and (3) are used, as-
suming the conclusion of point (1). Recall some notation: the Ti are
the simple modules of R given in (2.2.2); µi is the multiplicity of Ti in
R/ rad(R), (2.2.2); and si is the multiplicity of Ti in soc(A), (3.3.1).

Theorem 4.3.1. Let R be a finite ring, and assume that the alpha-
bet A has the property that, for some index i, the multiplicity si of Ti
appearing in soc(A) is strictly greater than the multiplicity µi of Ti ap-
pearing in R/ rad(R). Then the alphabet A does not have the extension
property with respect to Hamming weight.

Proof. By hypothesis, there is an index i such that si > µi. Of course,
siTi ⊂ soc(A) ⊂ A. Recall that Ti is the pullback to R of the standard
representation Mµi,1(Fqi) of Mµi

(Fqi), so that siTi is the pullback to R
of the Mµi

(Fqi)-module B = Mµi,si
(Fqi).

Because si > µi, Theorem 4.1.3 implies the existence of linear codes
C± ⊂ BN , with the property that there exists an linear isomorphism f :
C+ → C− that preserves Hamming weight, yet f does not extend to a
monomial transformation of BN . Note that the codes C± are Mµi

(Fqi)-
linear codes over the module B = Mµi,si

(Fqi). The projection mappings
R → R/ rad(R) → Mµi

(Fqi) allow us to consider C± as R-modules.

Since B pulls back to siTi, we have C± ⊂ (siTi)
N ⊂ soc(A)N ⊂ AN , as

R-modules. Thus C± are linear codes over A.
As in the proof of Theorem 4.1.3 (claim 3), the fact that C+ has an

identically zero component, while C− does not, implies that there is no
monomial transformation of AN from C+ to C−. Thus, the extension
property for Hamming weight over A fails to hold. �

Proof of Theorem 4.1.2. If the alphabet A has the extension property,
then A certainly has the extension property for codes of length 1. Since
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the latter is equivalent to A being pseudo-injective by Proposition 3.3.1,
it follows that A is pseudo-injective.

For the condition on soc(A), we prove the contrapositive. If soc(A)
is not cyclic, then, by Proposition 3.3.2, there is an index i with si >
µi. By Theorem 4.3.1, the alphabet A does not have the extension
property. �

Proof of Theorem 4.1.1. By Theorem 4.1.2, soc(R) is cyclic. By Propo-

sition 3.3.3, RR embeds into RR̂. Because |R̂| = |R|, we have the iso-

morphism RR ∼= RR̂. By a result of Honold [21, Theorem 2], R is a
Frobenius ring.

Alternatively, if R is not Frobenius, one can show that there exists
an index i and a value k > µi with kTi ⊂ soc(R) (see the exposition
following [13, Remark 4]). Thus si > µi, and Theorem 4.3.1 implies
that A = R does not have the extension property. �

Example 4.3.2. (Benson, [40, Example 1.4(ii)].) Let R be the ring
consisting of all 6 × 6 matrices over Fq of the form a below. The ring
R is not Frobenius. As rings, R/ rad(R) ∼= M2(Fq)⊕M1(Fq).

a =


a1 0 a2 0 0 0
0 a1 0 a2 a3 0
a4 0 a5 0 0 0
0 a4 0 a5 a6 0
0 0 0 0 a9 0
a7 0 a8 0 0 a9

 .

The set A consisting of all matrices of form a with ai = 0 for i 6= 7, 8 is
a left R-module that is isomorphic to the pull-back to R of the M1(Fq)-
module M1,2(Fq).

Denote by (x, y) the element of A with a7 = x and a8 = y (and other
ai = 0). The linear code C+ ⊂ A1+q ⊂ R1+q consists of all vectors of
length 1 + q of the form having one entry equal to (0, 0) and q entries
equal to (x, y). The linear code C− ⊂ A1+q ⊂ R1+q consists of all
vectors of length 1 + q with entries of the form (y, 0) and (x + αy, 0),
with α varying over all α ∈ Fq. The reader is invited to verify that C±
are counter-examples to the extension property.

5. Parameterized codes

The purpose of this section is to provide the theoretical foundations
that lead to the counter-example in Theorem 4.1.3. The underlying
ideas go back in part to [43].

Throughout this section, R is a finite ring with 1 and A = RA is a
finite left R-module, which will be the alphabet for R-linear codes. Fix
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a weight w on A, i.e., a function w : A → Q with w(0) = 0. As in
(3.1.2), Gr will denote the right symmetry group of w.

5.1. Parameterized codes. In many areas of mathematics one stud-
ies objects X and their subobjects Y ⊂ X. Often one way to study the
subobjects is to view them as images of morphisms f : Z → X. Alge-
braic and differential topology provide numerous examples of problems
in geometry (immersions, cobordism) that have been addressed in this
way by turning the problems into problems in homotopy theory. In
coding theory, it is the distinction between a linear code as a submod-
ule of an ambient space and an encoder from the module of information
symbols to the ambient space. Put another way, it is the distinction
between the row space of a generator matrix and the generator matrix
itself.

Definition 5.1.1. Given a finite left R-module M = RM , a param-
eterized code of length n is a pair (M,λ), where λ : M → An is an
R-linear homomorphism.

Every parameterized code (M,λ) gives rise to a linear code C =
imλ = Mλ ⊂ An. Of course, different parameterized codes may give
rise to the same linear code.

For a fixed module M , let Cn(M) be the set of all parameterized
codes (M,λ) of length n. For convenience, we define C0(M) to be the
one-element set consisting of the “empty code” of length 0. One defines
an operation of concatenation as follows:

Cn1(M)× Cn2(M)→ Cn1+n2(M),

((M,λ1), (M,λ2)) 7→ (M, (λ1, λ2)).

Set C(M) =
∐

n≥0 Cn(M) equal to the disjoint union of the Cn(M).

Proposition 5.1.2. The set C(M) is a monoid (associative semigroup
with identity) under concatenation, whose the identity is the empty code
in C0(M).

Proof. Exercise. �

Because the Gr-monomial transformations of An play an essential
role in the extension property, we will now introduce group actions
into our discussion of Cn(M). Let Gn be the group of Gr-monomial
transformations of An. The group Gn is the semidirect product of the
symmetric group Σn with the product group (Gr)

n. The group Gn acts
on Cn(M) on the right:

Cn(M)× Gn → Cn(M), (λ, T ) 7→ λ ◦ T,
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where λ ◦ T is just the compostion of λ : M → An with T : An → An

(viewing function inputs on the left). Let Cn(M) be the orbit space
under this group action: Cn(M) = Cn(M)/Gn. As above, set C(M) =∐

n≥0 Cn(M).

Proposition 5.1.3. Concatenation is a well-defined operation on C(M),
making it a commutative monoid.

Proof. Exercise. �

The reader should be aware that a parameterized code (M,λ) of
length n is different from that same code with a “zero column” added
(which is the parameterized code (M, (λ, 0)) of length n+ 1). The first
is an element of Cn(M); the second is in Cn+1(M). It will be convenient
to identify two parameterized codes that differ in this way, and we turn
to that topic next.

To be precise, let (M, ζ) ∈ C1(M) be the “zero code” of length 1;
i.e., ζ : M → A, with xζ = 0 for all x ∈M . By concatenating with the
zero code, there are injections

Cn(M) ↪→ Cn+1(M), λ 7→ (λ, ζ),

that are well-defined on the orbit spaces

Cn(M) ↪→ Cn+1(M).

Using these injections to make identifications, we form the identifica-
tion space E(M). Two elements of C(M) become identified in E(M) if
they differ by concatenating with zero codes. Thus, elements of E(M)
are parameterized codes with no zero components, up to Gr-monomial
transformations.

Proposition 5.1.4. Concatenation is also a well-defined operation on
E(M), making it a commutative monoid.

Proof. Exercise. �

Remark 5.1.5. The constructions of C(M), C(M), and E(M) can be
carried out in the language of category theory (see [26, III.3]). Pa-
rameterized codes of length n with alphabet A define a functor Cn
from the category of finite left R-modules to the category of sets, via
M 7→ HomR(M,An). Then C is the coproduct of those functors; C(M)
carries the additional structure of a monoid.

Similarly, Cn is a functor from finite R-modules to sets, and C is the
coproduct of those functors, while E is the colimit.
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5.2. Multiplicity functions. In this subsection we see how to view
parameterized codes in terms of multiplicity functions. The latter are
another way to describe codes, similar to using modular representa-
tions [31], [32], multisets [14], or projective systems [36]. Multiplicity
functions also draw on the coordinate-free approach to codes of [2].

The abelian group HomR(M,A) of all R-linear homomorphisms from
M to A admits a right action by the right symmetry group Gr (by
post-composition). Denote the orbit space of this action by O]. Let
F (O],N) equal the set of functions from O] to the natural numbers
N = {0, 1, 2, . . .}. Point-wise addition of functions endows F (O],N)
with the structure of a commutative monoid. Define

F0(O],N) := {η : O] → N | η(0) = 0},
which is the submonoid of F (O],N) consisting of those multiplicity
functions η that have multiplicity zero on the Gr-orbit of the zero
homomorphism in O]. (Elements of F0(O],N) will correspond to pa-
rameterized codes with no zero components.)

Theorem 5.2.1. Given a finite left R-module M ,

(1) C(M) and F (O],N) are isomorphic as monoids; and
(2) E(M) and F0(O],N) are isomorphic as monoids.

Proof. Exercise. The multiplicity function counts the number of com-
ponents of λ : M → An that belong to particular Gr-orbits. �

5.3. The weight mapping. In this subsection we describe the func-
tion that assigns to every element of a parameterized code its weight.
Remember that w is a weight on the alphabet A.

Given a parameterized code (M,λ), where λ : M → An, the weight
of an element x ∈ M is w(xλ) =

∑
w(xλi), where λ1, . . . , λn are the

components of λ. This definition extends to a well-defined map on
C(M) and E(M), because the action of the group Gn preserves w, and
because zero components contribute zero to the weight. In terms of
multiplicity functions in F (O],N), we get a map of function spaces
(with F (M,Q) being the set of functions from M to Q):

W : F (O],N)→ F (M,Q),

η 7→ [x 7→
∑
λ∈O]

w(xλ)η(λ)].(5.3.1)

Proposition 5.3.1. The mapping W : F (O],N)→ F (M,Q):

(1) is well-defined;
(2) is additive, i.e., W (η1 + η2) = W (η1) +W (η2);
(3) satisfies W (η)(0) = 0, for any η ∈ F (O],N);
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(4) has image contained in the Gl-invariant functions from M to
Q, i.e., W (η)(ux) = W (η)(x) for all x ∈M , u ∈ Gl.

Proof. Exercise. Recall that the left-symmetry group Gl is defined in
(3.1.1). �

The left-symmetry group Gl acts on M on the left. Denote the
orbit space of that action by O. It is easy to see that the set of Gl-
invariant functions M → Q is the same as the set F (O,Q) of functions
O → Q; F (O,Q) is a Q-vector space of dimension |O|. Let F0(O,Q) ⊂
F (O,Q) consist of those functions that equal zero on the orbit of the
zero element of M ; F0(O,Q) is a vector subspace of F (O,Q), and
dimF0(O,Q) = |O| − 1. By Proposition 5.3.1, W maps F (O],N) →
F0(O,Q).

We conclude this subsection by reformulating the extension property
in terms of the mapping W restricted to the submonoid F0(O],N).

Theorem 5.3.2. For an alphabet A, if the mapping W : F0(O],N)→
F0(O,Q) is injective for every finite R-module M , then the alphabet A
has the extension property with respect to the weight w.

Moreover, if the weight w : A → Q has the property that w(a) 6= 0
for every nonzero a ∈ An for any n, then the converse holds; i.e., if
A has the extension property with respect to the weight w, then W is
injective for any finite R-module M .

Proof. Suppose the mapping W is injective for every M , and suppose
C1, C2 ⊂ An are two R-linear codes with f : C1 → C2 an R-linear
isomorphism that preserves w.

Let M be the R-module underlying the linear code C1, and define two
parameterized codes by taking λ1 to be the inclusion map C1 ⊂ An and
λ2 = f . Then (M,λ1) and (M,λ2) are two paameterized codes; their
images are C1 and C2, respectively. Let η1 and η2 be the multiplicity
functions associated with (M,λ1) and (M,λ2), respectively. Because
f : C1 → C2 preserves w, it follows that W (η1) = W (η2). Because W
is injective, we conclude that η1 = η2 as elements of F0(O],N), which
means that there is a Gr-monomial transformation T with λ2 = λ1 ◦T ,
as desired.

For the converse, assume that A has the extension property and
w has the property that w(a) 6= 0 for any nonzero a ∈ An. Let M
be a finite left R-module, and suppose that η1, η2 ∈ F0(O],N) satisfy
W (η1) = W (η2). The multiplicity functions correspond to parameter-
ized codes (M,λ1) and (M,λ2), respectively. The tricky aspect of the
converse is that the homomorphisms λ1 and λ2 may have kernels.
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By the assumed property on w, it follows that w(xλ1) = 0 if and
only if xλ1 = 0, x ∈M , and similarly for λ2. Because W (η1) = W (η2),
we have that w(xλ1) = w(xλ2) for all x ∈ M . We conclude that
kerλ1 = kerλ2. By passing to the quotient by the common kernel if
necessary, we may assume that λ1 and λ2 are both injective maps.

Let C1 = Mλ1 and C2 = Mλ2; C1 and C2 are linear codes. Let
f : C1 → C2 be λ−1

1 ◦ λ2. Because λ1 and λ2 are injective, f is an
isomorphism. Because w(xλ1) = w(xλ2) for all x ∈ M , f preserves
w. By the extension property, there is a Gr-monomial transformation
taking C1 to C2. But this implies that η1 = η2 as elements of F0(O],N),
as desired. �

5.4. Completion over Q: virtual codes. In this subsection, we for-
mally complete the function space F0(O],N) to F0(O],Q).

The mapping W : F0(O],N) → F0(O,Q) is an additive map of
monoids. We have F0(O],N) ⊂ F0(O],Z) ⊂ F0(O],Q). Because
F0(O],Q) is a finite-dimensional Q-vector space (of dimension |O]|−1),
completing F0(O],N) to F0(O],Q) will allow us to use the tools of lin-
ear algebra in what follows. Elements of F0(O],Q) will be called virtual
codes, as in [43, Section 4].

Proposition 5.4.1. For any alphabet A and finite R-module M ,

(1) the mapping W : F0(O],N) → F0(O,Q) extends to a linear
transformation W : F0(O],Q)→ F0(O,Q) of finite-dimensional
Q-vector spaces; and

(2) the mapping W : F0(O],N)→ F0(O,Q) is injective if and only
if the linear transformation W : F0(O],Q) → F0(O,Q) is in-
jective.

(3) Theorem 5.3.2 holds with W : F0(O],Q)→ F0(O,Q) replacing
W : F0(O],N)→ F0(O,Q).

Proof. In order to prove that W : F0(O],Q) → F0(O,Q) is injective,
under the assumption that W : F0(O],N) → F0(O,Q) is injective,
consider η ∈ F0(O],Q) with W (η) = 0. Choose a sufficiently large
positive integer K to clear the denominators in the values of η, i.e.,
Kη ∈ F0(O],Z). Now split out the positive and negative values of Kη,
writing Kη = η+−η−, with both η+, η− ∈ F0(O],N). Because W (η) =
0, it follows that W (η+) = W (η−). Because W : F0(O],N)→ F0(O,Q)
is injective, we conclude that η+ = η−, so that Kη = 0, hence η = 0.

We leave the rest of the proof as an exercise. �

5.5. Matrix representation for W . The vector spaces F0(O],Q)
and F0(O,Q) have natural bases. For any nonzero orbit λ ∈ O], define
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δλ ∈ F0(O],Q) by

δλ(ν) =

{
1, ν = λ,

0, ν 6= λ.

Similarly, for any nonzero orbit x ∈ O, define δx ∈ F0(O,Q) by

δx(y) =

{
1, y = x,

0, y 6= x.

In terms of these bases, the linear transformation W : F0(O],Q) →
F0(O,Q) is represented by a matrix, also called W . We use (5.3.1) as
our guide. Any η ∈ F0(O],Q) is expressed in terms of the δλ-basis as

η =
∑
λ∈O]

η(λ)δλ.

Similarly, any h ∈ F0(O,Q) is expressed as

h =
∑
x∈O

h(x)δx.

View the coefficients η(λ) as a column vector indexed by the nonzero
elements of O], and view the coefficients h(x) as a column vector in-
dexed by the nonzero elements of O. The matrix W representing the
mapping W will have size (|O| − 1)× (|O]| − 1), with rows indexed by
the nonzero elements of O and columns indexed by the nonzero ele-
ments of O]. The entry of the matrix W in row x (x ∈ O) and column
λ (λ ∈ O]) is

(5.5.1) Wx,λ = w(xλ),

i.e., the weight w(xλ) of the element xλ ∈ A obtained by evaluating λ
at x. This is well-defined, by the definitions of the symmetry groups.
That the matrix W represents the mapping W is exactly the content
of (5.3.1).

5.6. Field case. In this subsection we examine in detail the mapping
W : F0(O],Q)→ F0(O,Q) when R = A is a finite field.

Let R = Fq be a finite field of order q. Let the alphabet A = R
be the field itself, and let w be the Hamming weight wt. Because Fq
is commutative, the left and right symmetry groups are equal, namely
G = F×q , the multiplicative group of the field Fq.

Let M be a finite R-module; i.e., M is a finite dimensional vector
space over Fq. Let dimM = k. The nonzero elements of the orbit space
O = M/G = M/F×q form the projective space associated to the vector
space M (the set of one-dimensional subspaces of M). Similarly, the
nonzero elements of the orbit space O] = HomFq(M,Fq)/F×q form the
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projective space associated with the dual vector space HomFq(M,Fq).
Notice that the number of nonzero elements in O and O] is the same,
namely, (qk − 1)/(q − 1). Thus the Q-vector spaces F0(O],Q) and
F0(O,Q) both have dimension (qk − 1)/(q − 1).

The matrixW of (5.5.1) is just the all-one matrix minus the incidence
pairing between the two projective spaces. This matrix is known to be
invertible, so this provides another proof of the extension property for
linear codes over finite fields with respect to Hamming weight. In fact,
this is exactly the approach used by MacWilliams in her dissertation
[27], by Bogart, et al. in [5], and by Greferath in [16].

5.7. Matrix module case. In this subsection we provide the back-
ground behind Theorem 4.1.3.

Let R = Mm(Fq) be the ring of all m × m matrices over a finite
field Fq, and let the alphabet A = Mm,k(Fq) be the left R-module
of all m × k matrices over Fq. Let w be the Hamming weight wt
on A. Then the symmetry groups are Gl = U(R) = GL(m,Fq) and
Gr = Aut(RA) = GL(k,Fq).

Let M be any finite left R-module. Because R = Mm(Fq) is a sim-
ple ring, M ∼= Mm,l(Fq) for some l. It follows that HomR(M,A) ∼=
Ml,k(Fq), acting by right matrix multiplication on elements of M .

The elements of the orbit space O = Gl\M = GL(m,Fq)\Mm,l(Fq)
are repesented uniquely by the row reduced echelon matrices of size m×
l. Similarly, the elements of the orbit space O] = HomR(M,A)/Gr =
Ml,k(Fq)/GL(k,Fq) are uniquely represented by the column reduced
echelon matrices of size l × k.

Because the matrix transpose interchanges row reduced echelon ma-
trices and column reduced echelon matrices, we see that

• |O| equals the number of row reduced echelon matrices of size
m× l, while
• |O]| equals the number of row reduced echelon matrices of size
k × l.

If k > m, then |O]| > |O|.
Remember that W : F0(O],Q) → F0(O,Q) is a linear transforma-

tion of Q-vector spaces, Also remember that dimF0(O,Q) = |O| − 1,
while dimF0(O],Q) = |O]| − 1. If k > m, then dimF0(O],Q) >
dimF0(O,Q), so that kerW 6= 0, and W cannot be injective.

When k = m+1, dimF0(O],Q) = 1+dimF0(O,Q), so dim kerW ≥
1. The exact form of an element of kerW (as in Theorem 4.1.3) was dis-
covered by doing several computer-assisted computations for small val-
ues of q,m, k and guessing the pattern. Once the pattern was guessed,
the proof of Theorem 4.1.3 verified the correctness of the guess.
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6. Symmetrized weight compositions

In this section, we discuss the extension property for symmetrized
weight compositions, following the ideas in [39].

6.1. Definitions. Let R be a finite ring with 1, and let A be a finite
left R-module which will serve as the alphabet for R-linear codes. Fix
a subgroup Gr ⊂ Aut(A) of the automorphism group of A.

The subgroup Gr ⊂ Aut(A) defines an equivalence relation ∼ on A,
via the right group action of Gr on A: a ∼ a′ if a = a′τ , for some
τ ∈ Gr. Denote the orbit space of this group action by A/Gr.

Definition 6.1.1. The symmetrized weight composition defined by the
subgroup Gr ⊂ Aut(A) is a function swc : An × A/Gr → N defined by

swca(x) = |{i : xi ∼ a}|, x = (x1, . . . , xn) ∈ An, a ∈ A/Gr.

Recall that a Gr-monomial transformation T of An has the form

(x1, . . . , xn)T = (xσ(1)τ1, . . . , xσ(n)τn), (x1, . . . , xn) ∈ An,
for some permutation σ of {1, 2, . . . , n} and automorphisms τ1, . . . , τn ∈
Gr. Observe that a Gr-monomial transformation T of An preserves swc;
i.e., swca(xT ) = swca(x), for all a ∈ A/Gr and x ∈ An.

Definition 6.1.2. The alphabet A has the extension property with
respect to swc if the following condition holds: for any two R-linear
codes C1, C2 ⊂ An, if f : C1 → C2 is an R-linear isomorphism that
preserves swc, then f extends to a Gr-monomial transformation of An.

6.2. Averaged characters. In this subsection, we adapt the results
on averaged characters of [39, Section 4] to the context of a module
alphabet.

The right action of Gr ⊂ Aut(A) on A induces a left action on the
function space F (A,C) of C-valued functions on A:

(τf)(a) = f(aτ), a ∈ A, τ ∈ Gr.

Write g ∼ f if g = τf for some τ ∈ Gr. The fixed points of this action
are the Gr-invariant functions on A:

FGr(A,C) = {f ∈ F (A,C) : f(aτ) = f(a), a ∈ A, τ ∈ Gr}.
Define a projection P : F (A,C)→ FGr(A,C) by averaging over the

orbits of the Gr-action. For f ∈ F (A,C) and a ∈ A,

(Pf)(a) =
1

|Gr|
∑
τ∈Gr

(τf)(a) =
1

|Gr|
∑
τ∈Gr

f(aτ).

Proposition 6.2.1. The map P has the following properties.
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(1) The map P is a linear projection; i.e., P ◦ P = P .
(2) If g ∼ f , then Pg = Pf.
(3) Suppose π, θ are two characters on A. Then θ ∼ π if and only

if Pθ = Pπ.
(4) Discarding duplicates, the distinct Pπ’s form an orthogonal sys-

tem in FGr(A,C). In particular, the distinct Pπ’s are linearly
independent in FGr(A,C).

Proof. The first result is an exercise for the reader. The second result
follows from a reindexing argument. For the third result, if Pπ1 = Pπ2,
then ∑

τ1∈Gr

τ1π1 =
∑
τ2∈Gr

τ2π2.

The functions τ1π1 and τ2π2 are all characters on A. By linear inde-
pendence of characters, π2 = τπ1 for some τ ∈ Gr.

The fourth result makes use of the inner product 〈·, ·〉 of (1.1.1).
Suppose Pθ 6= Pπ. Then

|Gr|2〈Pθ, Pπ〉 = 〈
∑
τ1∈Gr

τ1θ,
∑
τ2∈Gr

τ2π〉 =
∑
τ1,τ2

〈τ1θ, τ2π〉.

But each 〈τ1θ, τ2π〉 = 0 by Proposition 1.1.1. The distinct Pπ’s actually
form a basis for FGr(A,C), but we will not need this fact. �

6.3. Extension property for Frobenius bimodules. In this sub-
section we prove that the extension property with respect to swc holds
for any Frobenius bimodule A. This result was first proved for finite
fields in [15, p. 364] and for Frobenius rings in [39, Theorem 9].

Theorem 6.3.1. Let A be a Frobenius bimodule over a finite ring R,
and suppose A is equipped with a symmetrized weight composition swc.
Then A has the extension property with respect to swc.

Proof. Suppose C1, C2 ⊂ An are two R-linear codes and that f : C1 →
C2 is an R-linear isomorphism that preserves swc. Let M be the R-
module underlying the code C1 and let λ : M → An be the inclusion
C1 ⊂ An. Set ν = λ ◦ f : M → An. Because f preserves swc, it follows
that swca(xλ) = swca(xν) for all a ∈ A/Gr and x ∈M .

Express λ, ν : M → An in terms of components: λ = (λ1, . . . , λn),
ν = (ν1, . . . , νn), where λi, νj ∈ HomR(M,A). For a ∈ A/Gr, x ∈M ,

swca(xλ) =
1

|Â|

n∑
i=1

∑
b∼a

∑
π∈ bA

π(xλi − b) =
1

|Â|

n∑
i=1

∑
b∼a

∑
π∈ bA

π(xλi)π̄(b),
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by Proposition 1.1.1. The invariance of swc, i.e., swca(xλ) = swca(xν),
becomes

(6.3.1)
∑
π∈ bA

(
n∑
i=1

π(xλi)

)
(Pπ̄)(a) =

∑
π∈ bA

(
n∑
j=1

π(xνj)

)
(Pπ̄)(a),

for a ∈ A/Gr and x ∈M .
For a fixed x ∈M , (6.3.1) is an equation of complex linear combina-

tions of averaged characters (as functions of a). By linear independence
of averaged characters, we equate corresponding coefficients. Remem-
ber that ψ ∼ π if and only if Pψ = Pπ. Thus

(6.3.2)
n∑
i=1

∑
θ∼π

θ(xλi) =
n∑
j=1

∑
φ∼π

φ(xνj), x ∈M.

Note that (6.3.2) is an equation of characters on M , and that we have

one such equation for each Pπ, π ∈ Â.

We now use the hypothesis that A is a Frobenius bimodule: Â has
a generating character %. Consider (6.3.2) for π = ρ, and take i = 1
and θ = ρ on the left side. By linear independence of characters on
M , there exists φ ∼ ρ and index j such that ρ(xλ1) = φ(xνj) for all
x ∈ M . As φ ∼ ρ, there exists τ1 ∈ Gr such that φ = τ1ρ. Thus
ρ(xλ1) = ρ(xνjτ1) for all x ∈M . By Lemma 3.2.3, λ1 = νjτ1.

A reindexing argument shows that∑
θ∼ρ

θ(xλ1) =
∑
φ∼ρ

φ(xνj), x ∈M.

This allows us to reduce by one the size of the outer summation in
(6.3.2) (still with π = ρ). Proceeding by induction, we obtain a Gr-
monomial transformation T of An with λ = νT , as desired. �

Remark 6.3.2. Naturally, one would like to mimic the ideas in the proof
of Theorem 3.3.4 to extend Theorem 6.3.1 to more general alphabets,
but I have not been successful in doing so.

7. General weight functions

In this section, we describe what is known about the extension prop-
erty for weight functions more general than the Hamming weight.

7.1. Homogeneous weight. The homogeneous weight was first in-
troduced by Constantinescu in her Ph.D. dissertation [7] and was de-
veloped in subsequent papers by a number of authors: [8], [9], [16], [17],
[18], [20]. The extension property with respect to homogeneous weight
has been proved directly in these papers using techniques involving the
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combinatorial structure of the principal submodules of the alphabet
and its associated Möbius function. In the future, the homogeneous
weight may well turn out to be more important than the Hamming
weight for general alphabets.

The goal of this subsection is modest: to show that homogeneous
weight is preserved if and only if Hamming weight is preserved. It then
follows that an alphabet has the extension property with respect to
homogenous weight if and only if it has the extension property with
respect to Hamming weight. This result goes back to Greferath and
Schmidt [18] for ring alphabets. We follow the treatment for module
alphabets in [17, Section 4], but we omit proofs.

Suppose that (P,≤) is a partially ordered set (also called a poset).
The Möbius function µ : P × P → Q is defined by the conditions:
µ(x, x) = 1, µ(x, y) = 0 if x 6≤ y, and∑

y≤t≤x

µ(t, x) = 0 if y < x.

The partial order and the Möbius function induce transformations on
the space of rational (or real, or complex) valued functions on P , as
follows. Define two transformations S, I : F (P,Q)→ F (P,Q) by:

(Sf)(x) =
∑
y≤x

f(y), x ∈ P,

(Ig)(y) =
∑
x≤y

g(x)µ(x, y), y ∈ P.

The reader will check that S and I are inverses.
As usual, let R be a finite ring with 1, and let A be a finite left

R-module, which will be the alphabet for R-linear codes.

Definition 7.1.1. A weight w : A→ Q is pre-homogeneous if

(1) the left symmetry group Gl = U(R); and
(2) there exists a rational number γ such that∑

b∈Ra

w(b) = γ|Ra|, all nonzero a ∈ A.

A weight w is homogeneous if, in addition:∑
b∈B

w(b) = γ|B|, all nonzero submodules B ⊂ A.

Let P = {Ra : a ∈ A} be the set of all principal left submodules of
A. The set P is a partially ordered under set inclusion. Let µ be the
Möbius function for P .
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Theorem 7.1.2 ([17, Theorem 4.2]). Every alphabet A admits a pre-
homogeneous weight w, and every such pre-homogeneous weight has the
form

w(a) = γ

(
1− µ(0, Ra)

|U(R)a|

)
, a ∈ A,

for some nonzero γ ∈ Q.

We call γ the average weight of w.

Proposition 7.1.3 ([17, Proposition 4.1]). An alphabet A admits a
homogeneous weight w if and only if soc(A) is cyclic.

Let FU(R)(A,Q) be the space of U(R)-invariant Q-valued functions
on A; i.e., those functions f : A → Q satisfying f(ua) = f(a) for all
a ∈ A and u ∈ U(R). Define Σ : FU(R)(A,Q)→ FU(R)(A,Q) by

(Σf)(a) =
1

|Ra|
∑
b∈Ra

f(b), f ∈ FU(R)(A,Q), a ∈ A.

Observe that the pre-homogeneous condition implies that the Hamming
weight wt satisfies γ wt = Σw, where w is a pre-homogeneous weight
with average weight γ.

Also define the kernel K : A× A→ Q by

K(a, b) =
|Ra|
|U(R)a|

|Rb|
|U(R)b|

µ(Ra,Rb), a, b ∈ A,

where µ is the Möbius function for P = {Ra : a ∈ A}. Finally, we use
the kernel K to define ∆ : FU(R)(A,Q)→ FU(R)(A,Q) by

(∆g)(a) =
1

|Ra|
∑
b∈Ra

g(b)K(b, a), g ∈ FU(R)(A,Q), a ∈ A.

Theorem 7.1.4 ([17, Theorem 4.4]). The endomorphisms

Σ,∆ : FU(R)(A,Q)→ FU(R)(A,Q)

are inverses.

Functions f1, f2, . . . , fn ∈ FU(R)(A,Q), determine a function f :
An → Q by

f(a1, . . . , an) =
n∑
i=1

fi(ai).
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Then Σ and ∆ commute with this construction ([17, Proposition 4.2]):

(Σf)(a1, . . . , an) =
n∑
i=1

(Σfi)(ai),

(∆f)(a1, . . . , an) =
n∑
i=1

(∆fi)(ai).

It follows that Hamming weight and a pre-homogeneous weight w sat-
isfy γ wt = Σw on all on An. Because ∆ inverts Σ, we have the next
corollary.

Corollary 7.1.5. For linear codes C1, C2 ⊂ An, a linear homomor-
phism f : C1 → C2 preserves Hamming weight wt if and only if f
preserves pre-homogeneous weight w.

This corollary allows all extension properties proven for homoge-
neous weights to apply to Hamming weight, and vice versa. Note that
one of the conditions for the extension property to hold for Hamming
weight, soc(A) being cyclic, is exactly the condition needed for a pre-
homogeneous weight to be homogeneous.

7.2. A sufficient condition. In this subsection we describe a suffi-
cient condition for the extension theorem to hold with respect to a
general weight function over a Frobenius bimodule, generalizing [41,
Theorem 3.1].

Let R be a finite ring with 1 and A be a Frobenius bimodule over
R. Let w be a weight on the alphabet A, so that w : A → Q with
w(0) = 0. There are then left and right symmetry groups Gl, Gr, as in
(3.1.1) and (3.1.2). The right symmetry group Gr ⊂ Aut(A) defines a
symmetrized weight composition swc, as in Definition 6.1.1.

Lemma 7.2.1. Suppose λ : M → An is a parameterized code, then

w(xλ) =
∑

a∈A/Gr

w(a) swca(xλ), x ∈M.

Proof. For any x ∈M ,

w(xλ) =
n∑
i=1

w(xλi) =
∑
a∈A

w(a)|{i : xλi = a}|

=
∑

a∈A/Gr

∑
b∼a

w(b)|{i : xλi = b}|

=
∑

a∈A/Gr

w(a)
∑
b∼a

|{i : xλi = b}| =
∑

a∈A/Gr

w(a) swca(xλ),
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where we used the fact that w(b) = w(a) if b ∼ a. �

We now utilize the left module structure of M .

Corollary 7.2.2. For s ∈ R,

w(sxλ) =
∑

a∈A/Gr

w(sa) swca(xλ), x ∈M.

Proof. Repeat the argument of Lemma 7.2.1 using the fact that

w(sxλ) =
n∑
i=1

w(sxλi) =
∑
a∈A

w(sa)|{i : xλi = a}|.

�

Let F 0
Gl

(R,C) = {f : R → C | f(0) = 0 and f(us) = f(s), u ∈
Gl, s ∈ R} be the complex vector space of Gl-invariant functions on
R that vanish at 0. Similarly, let F 0

Gr
(A,C) = {f : A → C | f(0) =

0 and f(aφ) = f(a), a ∈ A, φ ∈ Gr} be the complex vector space of
Gr-invariant functions on A that vanish at 0. Define a linear trans-
formation W : F 0

Gr
(A,C)→ F 0

Gl
(R,C) by (Wf)(s) =

∑
a∈Aw(sa)f(a)

for f ∈ F 0
Gr

(A,C) and s ∈ R.

Theorem 7.2.3. If W : F 0
Gr

(A,C) → F 0
Gl

(R,C) is injective, then the
Frobenius bimodule A has the extension property with respect to w.

Proof. Suppose C1, C2 ⊂ An are two R-linear codes, and suppose f :
C1 → C2 is an R-linear isomorphism that preserves the weight w. As
usual, let M equal the module underlying the code C1, with λ : M →
An being the inclusion of C1 ⊂ An.

By hypothesis, w(xλf) = w(xλ) for all x ∈ M . In particular, if
s ∈ R, then sx ∈ M for any x ∈ M . Thus, w(sxλf) = w(sxλ) for all
x ∈M and s ∈ R. By Corollary 7.2.2, this implies that

(7.2.1)
∑
a∈A

w(sa) swca(xλf) =
∑
a∈A

w(sa) swca(xλ),

for all s ∈ R and x ∈ M . For a fixed value of x ∈ M , swca(xλ)
and swca(xλf) are elements of F 0

Gr
(A,C), and (7.2.1) says that the

values of W on these elements are equal. By the injectivity of W , we
conclude that swca(xλf) = swca(xλ), for all a ∈ A and x ∈ M . But
this means that f : C1 → C2 preserves swc. The result now follows
from Theorem 6.3.1. �

Remark 7.2.4. A more concrete way to express Theorem 7.2.3 is to
consider a matrix W , whose rows are parameterized by the nonzero
elements of Gl\R, whose columns are parameterized by the nonzero
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elements of A/Gr, and whose entry Ws,a, s ∈ Gl\R, a ∈ A/Gr, is
w(sa), the weight of the element sa ∈ A. This is well-defined, because
of the actions of the symmetry groups. The injectivity condition is that
the matrix not annihilate any nonzero column vector (whose entries
would be parameterized by a ∈ A/Gr).

7.3. Chain rings. In this subsection we discuss maximally symmetric
weights on finite chain rings.

A finite ring R is a left chain ring if its left ideals form a chain under
set inclusion. By a result of Clark and Drake [6, Lemma 1], a finite left
chain ring is also a right chain ring. Moreover, in a finite chain ring the
radical m = rad(R) is a maximal ideal, and all the ideals are two-sided
and of the form mi = Rmi = miR, for some (any) m ∈ m \ m2. Let e
be the smallest positive integer such that me = 0. Denoting by U the
group of units U(R), note that mi \mi+1 = Umi = miU .

A finite chain ring is Frobenius. Let A = R, so that R is a Frobenius
bimodule, and let w : R → Q be a weight on R. Assume that w has
maximal symmetry, i.e., that Gl = Gr = U . (In fact, Gl = U if and
only if Gr = U , because mi \mi+1 = Umi = miU .) Then the weight w
is completely determined by its values wi := w(mi), i = 0, 1, . . . , e− 1.

According to Remark 7.2.4, the matrix representing W in Theo-
rem 7.2.3 has the form

Wi,j = w(mimj) = w(mi+j) = wi+j, 0 ≤ i, j ≤ e− 1.

Since me = 0, wi+j = 0 for i + j ≥ e. It is then easy to calculate that
det(W ) = ±wee−1. As long as we−1 = w(me−1) 6= 0, W is injective, and
R has the extension property with respect to w. We summarize this
discussion in the following theorem.

Theorem 7.3.1. Suppose R is a finite chain ring, with rad(R) =
Rm = mR. Suppose w : R → Q is a weight on A = R such that
Gl = Gr = U(R). Then w is determined by its values wi = w(mi),
i = 0, 1, . . . , e− 1. Moreover, R has the extension property with respect
to w if and only if we−1 = w(me−1) 6= 0.

Remark 7.3.2. When the weight w has less symmetry, the conditions
needed in order for the extension property to hold with respect to w
can become very complicated. In the commutative case, the determi-
nant det(W ) admits a factorization into linear expressions involving
the characters of the group of units U(R). See [41, Theorem 7.3] and
[42, Theorem 7] for details.

7.4. Matrix rings. In this subsection we consider weights on the ma-
trix ring Mn(Fq) having maximal symmetry.
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Let R = Mn(Fq) be the ring of n×n matrices over the finite field Fq.
Let the alphabet A be the ring R itself, and suppose that w : R → Q
is a weight on R having maximal symmetry. That is, we assume that
Gl = Gr = U(R) = GLn(Fq). The ring R is Frobenius, so that R is a
Frobenius bimodule.

Proposition 7.4.1. Let R = A = Mn(Fq), and suppose w : R→ Q is
a weight having maximal symmetry. Then w(X) depends only on the
rank rk(X) of the matrix X ∈ Mn(Fq). That is, if rk(X) = rk(Y ),
X, Y ∈Mn(Fq), then w(X) = w(Y ).

Proof. By using elementary row and column operations, every X ∈
Mn(Fq) satisfies PXQ = I ′s, for some P,Q ∈ GLn(Fq) and integer s,
where

I ′s =

(
Is 0
0 0

)
.

The result now follows from the symmetry assumptions on w. �

Consequently, the weight w is completely determined by n values
ws := w(I ′s), s = 1, 2, . . . , n. (Remember that w(0) = 0 is part of
the definition of weight.) Every matrix X having rk(X) = s satisfies
w(X) = ws.

Theorem 7.4.2. Let R = A = Mn(Fq). Suppose w : R → Q is a
weight having maximal symmetry, and denote by ws the value of w on
an element of R of rank s. Then R has the extension property with
respect to the weight w if the following quantities w′s are all non-zero,
for s = 1, 2, . . . , n:

w′s :=
s∑
i=1

(−1)iq(
i
2)
[
s
i

]
q

wi.

Theorem 7.4.2 will follow as a corollary of Theorem 7.4.3, which de-
scribes the determinant of the matrix representing W in Theorem 7.2.3.
To prepare for Theorem 7.4.3, we need to describe the orbit spaces
Gl\R and R/Gr of Remark 7.2.4.

Remember that we are assuming that w has maximal symmetry, so
that Gl = Gr = GLn(Fq). Then Gl\R is in one-to-one correspondence
with the set of row reduced echelon matrices, while R/Gr is in one-to-
one correspondence with the set of column reduced echelon matrices.
The matrix representing W in Theorem 7.2.3 thus has rows param-
eterized by the nonzero row reduced echelon matrices and columns
parameterized by the nonzero column reduced echelon matrices. The
entry of W in position (P,Q) is ws, where s = rk(PQ).
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It will be useful to view the matrix representing W in another way.
To that end, the elements of R = Mn(Fq) define linear transformations
Fnq → Fnq via (left) matrix multiplication on column vectors. Two
elements of R are in the same left Gl-orbit if and only if they have
the same kernel as linear transformations. Similarly, two elements of R
are in the same right Gr-orbit if and only if they have the same image
as linear transformations. So, another way to parameterize the matrix
representing W is this: parameterize rows and columns by nonzero
linear subspaces of Fnq . The row parameterized by a nonzero subspace
U will correspond to the Gl-orbit of linear transformations with kernel
equal to U⊥ (under the standard dot product on Fnq ). The column
parameterized by a nonzero subspace V will correspond to the Gr-
orbit of linear transformations with image equal to V . The entry of W
in position (U, V ) is then ws, where s = dimV − dim(U⊥ ∩ V ), as the
reader will verify.

Theorem 7.4.3. In the notation given above, the determinant of the
matrix representing W is

detW = C
n∏
s=1

(w′s)
[ns ]

q = C
n∏
s=1

(
s∑
i=1

(−1)iq(
i
2)
[
s
i

]
q

wi

)[ns ]
q

,

where C is a nonzero constant.

Proof. Define another matrix P whose rows and columns are parame-
terized by the nonzero linear subspaces of Fnq by

PU,V =

{
(−1)dimUq(

dim U
2 ), U ⊂ V,

0, U 6⊂ V.

If we order the nonzero linear subspaces in such a way that the dimen-
sions are (say) nonincreasing, then the matrix P is lower-triangular,
with diagonal entries

PU,U = (−1)dimUq(
dim U

2 ).

Thus, the matrix P has detP 6= 0 and is invertible over Q.
A somewhat laborious computation shows that the matrix WP has a

block upper-triangular form. The block matrices on the diagonal have
the form w′sQs, s = 1, 2, . . . , n, where, as above,

w′s :=
s∑
i=1

(−1)iq(
i
2)
[
s
i

]
q

wi,

and Qs is a square matrix of size [ ns ]q, parameterized by the linear
subspaces of dimension s in Fnq . The entries of the matrix Qs are given
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by

(Qs)U,V =

{
1, U⊥ ∩ V = 0,

0, U⊥ ∩ V 6= 0.

Provided that we can show that detQs is nonzero, the formula for
detW follows. We show that detQs 6= 0 in Lemma 7.4.4. �

Lemma 7.4.4. In the notation above, detQs 6= 0 for s = 1, 2, . . . , n.

Proof. We make use of the fact that we already know that R = Mn(Fq),
a Frobenius ring, has the extension property with respect to Hamming
weight wt, by Theorem 3.4.2.

To be more precise, let R = Mn(Fq) and let the alphabet RA = RR
be the ring itself. Using Hamming weight wt on A = R, the symmetry
groups are Gl = Gr = U(R) = GLn(Fq). Because Hamming weight has
the property that wt(a) 6= 0 for every nonzero a ∈ An, Theorem 5.3.2
implies that the mapping W : F0(O],N) → F0(O,Q) is injective for
every finite R-module M . When RM = RR is the ring itself, the matrix
representing W : F0(O],N)→ F0(O,Q) is, by (5.5.1), the same as the
matrix of Remark 7.2.4, using Hamming weight wt. As a consequence,
the matrix W of Theorem 7.4.3 is invertible, provided one is using
Hamming weight wt.

In the case of Hamming weight, where w1 = w2 = · · · = wn = 1, a
computation using the Cauchy binomial theorem shows that w′1 = w′2 =
· · · = w′n = 1, as well. As a consequence, if we repeat the argument
in the proof of Theorem 7.4.3 in the case of Hamming weight, we see
that WP is a block upper-triangular matrix, with the matrices Qs on
the diagonal. Because P is invertible in general and W is invertible for
Hamming weight, as shown above, we conclude that the matrices Qs

are also invertible. �

Remark 7.4.5. I would expect that there is a direct proof that the
matrices Qs are invertible, but I was unable to locate one.

Part 3. MacWilliams identities

In this part, we turn our attention to the MacWilliams identities on
weight enumerators.

8. A model theorem

In this section we describe a theorem, valid over finite fields, involving
linear codes, their dual codes, and the MacWilliams identities between
their Hamming weight enumerators. This theorem will serve as a model
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for subsequent generalizations to additive codes, linear codes over rings
or modules, and other weight enumerators.

8.1. Classical case of finite fields. We recall without proofs the
classical situation of linear codes over finite fields, their dual codes, and
the MacWilliams identities between the Hamming weight enumerators
of a linear code and its dual code. This material is standard and can be
found in [29]. Proofs of generalizations will be provided in subsequent
sections.

Let Fq be a finite field with q elements. Define 〈·, ·〉 : Fnq × Fnq → Fq
by

〈x, y〉 =
n∑
j=1

xjyj,

for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fnq . The operations
are those of the finite field Fq. The pairing 〈·, ·〉 is a non-degenerate
symmetric bilinear form.

A linear code of length n is a linear subspace C ⊂ Fnq . It is traditional

to denote k = dimC. The dual code C⊥ is defined by:

C⊥ = {y ∈ Fnq : 〈x, y〉 = 0, for all x ∈ C}.
As usual, the Hamming weight wt : Fq → Q is defined by wt(a) = 1

for a 6= 0, and wt(0) = 0. The Hamming weight is extended to a
function wt : Fnq → Q by

wt(x) =
n∑
j=1

wt(xj), x = (x1, x2, . . . , xn) ∈ Fnq .

Then wt(x) equals the number of non-zero entries of x ∈ Fn.
The Hamming weight enumerator of a linear code C is a polynomial

WC(X, Y ) in C[X, Y ] defined by

WC(X, Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) =
n∑
j=0

AjX
n−jY j,

where Aj is the number of codewords in C of Hamming weight j.
The following theorem summarizes the essential properties of C⊥ and

the Hamming weight enumerator. This theorem will serve as a model
for results in later sections.

Theorem 8.1.1. Suppose C is a linear code of length n over a finite
field Fq. The dual code C⊥ satisfies:

(1) C⊥ ⊂ Fnq ;

(2) C⊥ is a linear code of length n;
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(3) (C⊥)⊥ = C;
(4) dimC⊥ = n− dimC (or |C| · |C⊥| = |Fnq | = qn); and
(5) (the MacWilliams identities, [27], [28])

WC⊥(X, Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y ).

8.2. Plan of attack. In subsequent sections, Theorem 8.1.1 will be
generalized in various ways, first to additive codes, then to linear codes
over rings and modules, and finally to other weight enumerators. In
order to maintain our focus on the central issue of duality, only the
Hamming weight enumerator will be discussed initially.

As we will see in the discussion of additive codes (Section 9), one
natural choice for a dual code to a code C ⊂ Gn will be the character-
theoretic annihilator (Ĝn : C). The drawback of this choice is that the
annihilator is not a code in the original ambient space Gn; rather, it is

a code in Ĝn. By introducing a nondegenerate biadditive form on Gn

(Subsection 9.3), one establishes a choice of identification between Gn

and Ĝn. This will remedy the drawback of the dual not being a code
in the original ambiant space.

At the next stage of generalization, linear codes over rings (Sec-
tion 10), one must be mindful to ensure that the dual code is again a
linear code, that the size of the dual is correct, and that the double
dual property is satisfied. The latter requirement will force the ground
ring to be quasi-Frobenius. In order that the dual code be linear, the
biadditive form needs to be bilinear, yet still provide an identification

between Rn and R̂n. This and the size restriction will place an addi-
tional requirement on the ground ring, that it be Frobenius.

Once duality has been sorted out, the generalizations to other weight
enumerators will be comparatively straight-forward (Section 11).

9. MacWilliams identities for additive codes

In this section we generalize the model Theorem 8.1.1 to additive
codes over finite abelian groups. We begin with a review of the Fourier
transform and the Poisson summation formula, which will be key tools
in proving the MacWilliams identities.

9.1. Fourier transform and Poisson summation formula. In this
subsection we record some of the basic properties of the Fourier trans-
form on a finite abelian group (cf. [40, Appendix A]). The proofs are
left as exercises for the reader.

Suppose that G is a finite abelian group and that V is a vector space
over the complex numbers. Let F (G, V ) = {f : G→ V } be the set of
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all functions from G to V ; F (G, V ) is vector space over the complex
numbers.

The Fourier transform ˆ : F (G, V )→ F (Ĝ, V ) is defined by

f̂(π) =
∑
x∈G

π(x)f(x), f ∈ F (G, V ), π ∈ Ĝ.

The Fourier transform is a linear transformation with inverse transfor-
mation determined by the following relation.

Proposition 9.1.1 (Fourier inversion formula).

f(x) =
1

|G|
∑
π∈ bG

π(−x)f̂(π), x ∈ G, f ∈ F (G, V ).

Theorem 9.1.2 (Poisson summation formula). Let H be a subgroup
of a finite abelian group G. Then, for any a ∈ G,∑

x∈H

f(a+ x) =
1

|(Ĝ : H)|

∑
π∈( bG:H)

π(−a)f̂(π).

In particular, when a = 0 (or a ∈ H),∑
x∈H

f(x) =
1

|(Ĝ : H)|

∑
π∈( bG:H)

f̂(π).

In fact, the Poisson summation formula is a special case of a more
general result that we will now describe. This more general result will
be used in subsection 10.6 when we discuss some degenerate cases of
the MacWilliams identities.

Let G1 and G2 be finite abelian groups, and suppose τ : G1 → Ĝ2

is a group homomorphism. Then τ induces a homomorphism τ̂ : G2
∼=̂̂

G2 → Ĝ1 by (τ̂(y))(x) = (τ(x))(y), for x ∈ G1, y ∈ G2.

Theorem 9.1.3. Let G1, G2 be finite abelian groups, and let τ : G1 →
Ĝ2 be a homomorphism. Assume K ⊂ G1 is a subgroup and a ∈ G1.
Then for any function f : G2 → V , V a complex vector space,∑

x∈K

f̂(τ(a+ x)) = |K|
∑

y∈τ̂−1( bG1:K)

(τ̂(y))(a)f(y).

In particular, when a = 0 (or a ∈ K),∑
x∈K

f̂(τ(x)) = |K|
∑

y∈τ̂−1( bG1:K)

f(y).
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To recover the Poisson summation formula in the subgroup case of

H ⊂ G, take G1 = Ĝ, G2 = G, τ : Ĝ → Ĝ equal to the identity, and

K = (Ĝ : H) ⊂ G1. Observe that τ̂−1(Ĝ1 : K) = H.
When the vector space V has the additional structure of a commu-

tative complex algebra, we have the following technical result.

Proposition 9.1.4. Suppose that V is a commutative complex algebra.
Suppose that f ∈ F (Gn,V) has the form

f(x1, . . . , xn) =
n∏
i=1

fi(xi),

where f1, . . . , fn ∈ F (G,V). Then f̂ =
∏
f̂i; i.e., for π = (π1, . . . , πn) ∈

Ĝn ∼= Ĝn,

f̂(π) =
n∏
i=1

f̂i(πi).

9.2. Additive codes. Let (G,+) be a finite abelian group. An addi-
tive code of length n over G is a subgroup C ⊂ Gn. Hamming weight
on G is defined as before, for a ∈ G and x = (x1, . . . , xn) ∈ Gn:

wt(a) =

{
1, a 6= 0,

0, a = 0;
wt(x) =

n∑
j=1

wt(xj).

Thus, wt(x) is the number of nonzero entries of x.
Given an additive code C ⊂ Gn, one way to define its dual code is

via the character-theoretic annihilator (Ĝn : C).
As before, the Hamming weight enumerator of an additive code C ⊂

Gn is:

WC(X, Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) =
n∑
j=0

AjX
n−jY j,

where Aj is the number of codewords of Hamming weight j in C.
The model Theorem 8.1.1 then takes the following form. This result

is a variant of a theorem of Delsarte [11].

Theorem 9.2.1. Suppose C is an additive code of length n over a

finite abelian group G. The annihilator (Ĝn : C) satisfies:

(1) (Ĝn : C) ⊂ Ĝn;

(2) (Ĝn : C) is an additive code of length n in Ĝn;

(3) (Gn : (Ĝn : C)) = C;

(4) |C| · |(Ĝn : C)| = |Gn|; and
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(5) the MacWilliams identities hold:

W( bGn:C)(X, Y ) =
1

|C|
WC(X + (|G| − 1)Y,X − Y ).

The first four properties are clear from the definition of (Ĝn : C).
For the proof of the MacWilliams identities, we follow Gleason’s use of
the Poisson summation formula (see [3, §1.12]). To that end, we first
lay some groundwork.

Let V = C[X, Y ], a commutative complex algebra, and let fi : G→
C[X, Y ] be given by fi(xi) = X1−wt(xi)Y wt(xi), xi ∈ G. Now define
f : Gn → C[X, Y ] by

f(x1, . . . , xn) =
n∏
i=1

fi(xi) =
n∏
i=1

X1−wt(xi)Y wt(xi) = Xn−wt(x)Y wt(x),

for x = (x1, . . . , xn) ∈ Gn.

Lemma 9.2.2. For fi(xi) = X1−wt(xi)Y wt(xi), xi ∈ G, and πi ∈ Ĝ,

f̂i(πi) =

{
X + (|G| − 1)Y, πi = 1 ($i = 0),

X − Y, πi 6= 1 ($i 6= 0).

Thus,

f̂(π) = (X + (|G| − 1)Y )n−wt($)(X − Y )wt($),

where π = (π1, . . . , πn) ∈ Ĝn = Ĝn.

Proof. By the definition of the Fourier transform,

f̂i(πi) =
∑
xi∈G

πi(xi)f(xi) =
∑
xi∈G

πi(xi)X
1−wt(xi)Y wt(xi).

Split the sum into the xi = 0 term and the remaining xi 6= 0 terms:

f̂i(πi) = X +
∑
xi 6=0

πi(xi)Y.

By Proposition 1.1.1, the character sum equals |G| − 1 when π = 1,

while it equals −1 when π 6= 1. The result for f̂i follows. Use Proposi-
tion 9.1.4 to obtain the formula for f̂ . �

Proof of the MacWilliams identities in Theorem 9.2.1. We use f(x) =
Xn−wt(x)Y wt(x) as defined above. By the Poisson summation formula,
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Theorem 9.1.2, we have

WC(X, Y ) =
∑
x∈C

f(x) =
1

|(Ĝn : C)|

∑
$∈( bGn:C)

f̂(π)

=
1

|(Ĝn : C)|

∑
$∈( bGn:C)

(X + (|G| − 1)Y )n−wt($)(X − Y )wt($)

=
1

|(Ĝn : C)|
W( bGn:C)(X + (|G| − 1)Y,X − Y ).

Interchanging the roles of C and (Ĝn : C) yields the form of the iden-
tities stated in the theorem. �

Remark 9.2.3. In comparing Theorem 9.2.1 with Theorem 8.1.1, the

only drawback is that the “dual code” (Ĝn : C) lives in Ĝn, not Gn.
One way to address this deficiency will be the use of biadditive forms
in subsection 9.3.

9.3. Biadditive forms. Biadditive forms are introduced in order to
make identifications between a finite abelian group G and its character

group Ĝ.
Let G, H, and E be abelian groups. A biadditive form is a map

β : G ×H → E such that β(x, ·) : H → E is a homomorphism for all
x ∈ G and β(·, y) : G→ E is a homomorphism for all y ∈ H. Observe
that β induces two group homomorphisms:

χ : G→ HomZ(H,E), χx(y) = β(x, y), x ∈ G, y ∈ H;

ψ : H → HomZ(G,E), ψy(x) = β(x, y), x ∈ G, y ∈ H.

The biadditive form β is nondegenerate if both maps χ and ψ are
injective. Extend β to β : Gn ×Hn → E by

β(a, b) =
n∑
j=1

β(xj, yj), x = (x1, . . . , xn) ∈ Gn, y = (y1, . . . , yn) ∈ Hn.

If G and H are finite abelian groups and E = Q/Z, then recall

that HomZ(G,Q/Z) ∼= Ĝ, so that a nondegenerate biadditive form

β : G × H → Q/Z induces two injective homomorphisms χ : G → Ĥ

and ψ : H → Ĝ. Because |G| = |Ĝ|, we conclude that χ and ψ are
isomorphisms, so that G ∼= H. Thus, there is no loss of generality to
have G = H, with a nondegenerate biadditive form β : G×G→ Q/Z.
Observe now that χ = ψ if and only if the form β is symmetric. Equiv-
alently, χx(y) = χy(x) for all x, y ∈ G if and only if β is symmetric.
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For an additive code C ⊂ Gn, the character-theoretic annihilator

(Ĝn : C) ⊂ Ĝn corresponds, under the isomorphisms χ, ψ, to the anni-
hilators determined by β:

l(C) := {y ∈ Gn : β(y, x) = 0, for all x ∈ C}, (under χ),

r(C) := {z ∈ Gn : β(x, z) = 0, for all x ∈ C}, (under ψ).

Observe that l(r(C)) = C and r(l(C)) = C. Of course, if β is symmet-
ric, then l(C) = r(C). To summarize:

Proposition 9.3.1. Suppose G is a finite abelian group and β : G ×
G → Q/Z is a nondegenerate biadditive form. The annihilators l(C)
and r(C) of an additive code C ⊂ Gn satisfy

(1) l(C), r(C) ⊂ Gn;
(2) l(C), r(C) are additive codes of length n in Gn;
(3) l(r(C)) = C and r(l(C)) = C;
(4) |C| · |l(C)| = |C| · |r(C)| = |Gn|; and
(5) the MacWilliams identities hold:

Wl(C)(X, Y ) =
1

|C|
WC(X + (|G| − 1)Y,X − Y ) = Wr(C)(X, Y ).

If β is symmetric, then l(C) = r(C). Moreover, for any finite abelian
group G, there exists a nondegenerate, symmetric biadditive form β :
G×G→ Q/Z.

10. Duality for modules

In this section we discuss dual codes and the MacWilliams identities
in the context of linear codes defined over a finite ring or, even more
generally, over a finite module over a finite ring.

10.1. Linear codes. Fix a finite ring R with 1. The ring R may not
be commutative. Also fix a finite left R-module A, which will serve as
the alphabet for R-linear codes.

Definition 10.1.1. A left R-linear code of length n over the alphabet
A is a left R-submodule C ⊂ An.

An important special case is when the alphabet A equals the ground
ring R.

Remember that the character group Â of A admits a right R-module

structure via $r(a) = $(ra), for r ∈ R, a ∈ A, and $ ∈ Â.
For an R-linear code C ⊂ An, the character-theoretic annihilator

(Ân : C) = {$ ∈ Ân : $(C) = 0} is a right submodule of Ân.
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Proposition 10.1.2. The annihilator (Ân : C) of an R-linear code
C ⊂ An satisfies

(1) (Ân : C) ⊂ Ân;

(2) (Ân : C) is a right R-linear code of length n in Ân;

(3) (An : (Ân : C)) = C;

(4) |C| · |(Ân : C)| = |An|; and
(5) the MacWilliams identities hold:

W( bAn:C)(X, Y ) =
1

|C|
WC(X + (|A| − 1)Y,X − Y ).

The only drawback is that the annihilator (Ân : C) is not a code
over the original alphabet A. As we did for additive codes, one way to
remedy this drawback is to use nondegenerate bilinear forms. We will
introduce bilinear forms in a very general context and then be more
specific as we proceeed.

10.2. Bilinear forms. LetR and S be finite rings with 1, A a finite left
R-module, B a finite right S-module, and E a finite (R, S)-bimodule.
In this context, a bilinear form is a map β : A × B → E such that
β(a, ·) : B → E is a right S-module homomorphism for all a ∈ A
and β(·, b) : A → E is a left R-module homomorphism for all b ∈ B.
Observe that β induces two module homomorphisms:

χ : A→ HomS(B,E), χa(b) = β(a, b), a ∈ A, b ∈ B;

ψ : B → HomR(A,E), ψb(a) = β(a, b), a ∈ A, b ∈ B.
The bilinear form β is nondegenerate if both maps φ and ψ are injective.
Extend β to β : An ×Bn → E by

β(a, b) =
n∑
j=1

β(aj, bj), a = (a1, . . . , an) ∈ An, b = (b1, . . . , bn) ∈ Bn.

For subsets P ⊂ An and Q ⊂ Bn we define annihilators

l(Q) = {a ∈ An : β(a, q) = 0, for all q ∈ Q},
r(P ) = {b ∈ Bn : β(p, b) = 0, for all p ∈ P}.

Observe that l(Q) is a left submodule of An and r(P ) is a right sub-
module of Bn. Also observe that Q ⊂ r(l(Q)) and P ⊂ l(r(P )), for
P ⊂ An and Q ⊂ Bn.

An important special case is the following example.

Example 10.2.1. Let R = S and let A = RR, B = RR and E = RRR.
Define β : R × R → R by β(a, b) = ab, where ab ∈ R is the product
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in the ring R. Because R has a unit element, β is a nondegenerate
bilinear form.

As above, if P ⊂ Rn, then l(P ) is a left submodule of Rn and r(P )
is a right submodule of Rn. Moreover, if P is also a left (resp., right)
submodule of Rn, then l(P ) (resp., r(P )) is a sub-bimodule of Rn.

Comparing with the model Theorem 8.1.1, the annihilator r(C) of
a left linear code C ⊂ Rn will indeed be a right linear code in Rn.
However, we will need to be concerned about two other of the items in
Theorem 8.1.1: the double annihilator property and the size property.
In the next two subsections we examine these properties in more detail.

10.3. The double annihilator property. Continue to assume the
conditions in Example 10.2.1, i.e., β : Rn × Rn → R is the standard
dot product given by

β(a, b) =
n∑
i=1

aibi,

for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, where aibi is the product in
the ring R.

Proposition 10.3.1. The annihilators l(D), r(C) satisfy:

(1) If C ⊂ Rn is a left submodule, then C ⊂ l(r(C)).
(2) If D ⊂ Rn is a right submodule, then D ⊂ r(l(D)).
(3) Equality holds for all C and D if and only if R is a quasi-

Frobenius ring.

Proof. The first two containments are true even if C, D are merely
subsets of Rn. Now consider the last statement. In the case where
n = 1, equality would mean that C = l(r(C)) and D = r(l(D)) for
every left ideal C and right ideal D of R. In some texts, for example
[10, Definition 58.5], this is the definition of a quasi-Frobenius ring.
In [24, Theorem 15.1], the double annihilator condition is one of four
equivalent conditions that serve to define a quasi-Frobenius ring.

For n > 1, the double annihilator condition holds over a quasi-
Frobenius ring by a theorem of Hall, [19, Theorem 5.2]. �

10.4. The size condition. We continue to assume that β : Rn×Rn →
R is the standard dot product over a finite ring R. Motivated by the
previous subsection, we now assume that R is a quasi-Frobenius ring
as well.

First, the bad news.
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Theorem 10.4.1. If R is not a Frobenius ring, there exists a left ideal
I ⊂ R with |I| · |r(I)| < |R|, and there exists a right ideal J ⊂ R with
|J | · |l(J)| < |R|.

Proof. As in the alternative proof of Theorem 4.1.1, if R is not Frobe-
nius, there exists an index i and a value k > µi with kTi ⊂ soc(R).
The notation is as in (2.2.2). We set I = Ti, a simple left ideal of R.
Because Ti is the pullback to R of the left Mµi

(Fqi)-module Mµi,1(Fqi),
we have |I| = qµi

i . We now wish to understand r(I).
Because I = Ti is a simple module, it is generated by any non-zero

element in I. Let x ∈ I be a nonzero element, so that I = Rx. Consider
fx : R→ R given by left multiplication by x: fx(r) = xr, r ∈ R. Then
fx is a homomorphism of right R-modules, and r(I) = ker(fx), because
I = Rx. It follows that |r(I)| = |ker(fx)| = |R|/|im fx| = |R|/|xR|.

As above, kTi ⊂ soc(R). There is no loss of generality in assuming
that k is the largest integer with this property. As above, we can view
kTi as the pullback to R of the left Mµi

(Fqi)-module Mµi,k(Fqi). But
this matrix module is also a right module over S := Mk(Fqi). Right
multiplication by a matrix B ∈ S defines a homomorphism gB : kTi →
kTi of left R-modules.

Because R is a quasi-Frobenius ring, it is in particular self-injective.
Thus the homomorphism gB : kTi → kTi ⊂ R of leftR-modules extends
to a left endomorphism g′B : R→ R. Because R is a ring with 1, every
left endomorphism of R is given by right multiplication by an element
of R. In particular, we have xS ⊂ xR for any x ∈ kTi.

Now we compute. Without loss of generality, we assume that I
represents the first column of kTi ∼= Mµi,k(Fqi), and we take the nonzero
element x ∈ I to be the element with a 1 in the first row and first
column and zeroes elsewhere. As above, |Rx| = |I| = qµi

i . Inside
Mµi,k(Fqi), xS consists of all µi × k matrices with zeroes everywhere
in rows 2, . . . , µi (the entries in the first row are arbitrary). Thus
|xS| = qki . Because xS ⊂ xR, we have |xS| ≤ |xR|.

Thus, |r(I)| = |R|/|xR| ≤ |R|/|xS| = |R|/qki , so that |I| · |r(I)| ≤
|R| qµi−k

i . Because k > µi, we see that |I| · |r(I)| < |R|, as claimed.
The statement for right ideals follows from left-right symmetry. �

Corollary 10.4.2. The MacWilliams identites cannnot hold over a
non-Frobenius ring R using l(C) and r(C) as the notions of dual codes.

Proof. Consider the meaning of the MacWilliams identities for linear
codes of length 1, i.e., when the linear code C ⊂ R is a left ideal.
Clearly, WC(X, Y ) = X + (|C| − 1)Y .
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Then, the right side of the MacWilliams identities becomes

1

|C|
WC(X + (|R| − 1)Y,X − Y )

=
1

|C|
(X + (|R| − 1)Y + (|C| − 1)(X − Y ))

= X +

(
|R|
|C|
− 1

)
Y.

This latter equals the Hamming weight enumerator for r(C) (or l(C))
if and only if |C| · |r(C)| = |R| (or |C| · |l(C)| = |R|), which contradicts
Theorem 10.4.1. �

10.5. Generating characters. For the good news, let us return to
the general situation of a nondegenerate β : RA×BS → RES.

Theorem 10.5.1. Suppose β : RA × BS → RES is a nondegenerate
bilinear form. Suppose there exists a character % : E → Q/Z with the
property that ker % contains no nonzero left or right submodules.

Let β′ : A×B → Q/Z be given by β′ = % ◦ β. Then

(1) β′ is a nondegenerate biadditive form on abelian groups;
(2) if C ⊂ An is a left submodule, then r(C) = r′(C);
(3) if D ⊂ Bn is a right submodule, then l(D) = l′(D);
(4) l(r(C)) = C for left submodules C ⊂ An, and r(l(D)) = D for

right submodules D ⊂ Bn;
(5) |C| · |r(C)| = |An| and |D| · |l(D)| = |Bn|;
(6) the MacWilliams identities hold for submodules using r(C) and

l(D) as the notions of dual codes:

Wr(C)(X, Y ) =
1

|C|
WC(X + (|A| − 1)Y,X − Y ),

Wl(D)(X, Y ) =
1

|D|
WD(X + (|B| − 1)Y,X − Y ).

Proof. In order to show that β′ is nondegenerate, suppose that b ∈ B
has the property that β′(A, b) = 0. We need to show that b = 0.

Let ψb : A → E be given by ψb(a) = β(a, b), a ∈ A; ψb is a homo-
morphism of left R-modules. By the hypothesis on b and the definition
of β′, we see that %(ψb(A)) = 0; i.e., ψb(A) ⊂ ker %. But ψb(A) is a left
R-submodule of E, so the hypothesis on % implies that ψb(A) = 0. Be-
cause β was assumed to be nondegenerate, we conclude that b = 0. A
similar argument proves the nondegeneracy of β′ in the other variable.

If C ⊂ An is a leftR-submodule, then β′ = %◦β implies r(C) ⊂ r′(C).
Now suppose that b ∈ r′(C), i.e., that β′(C, b) = 0. This implies that
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ψb(C) = β(C, b) ⊂ ker %. But ψb(C) is a left R-submodule of E, so
the hypothesis on % again implies that ψb(C) = 0. Thus b ∈ r(C), and
r(C) = r′(C). The proof for l(D) is similar.

The remaining items now follow from Proposition 9.3.1. It follows
from the discussion in subsection 9.3 that A and B are isomorphic as
abelian groups. �

We will call a character % satisfying the hypothesis of Theorem 10.5.1
a generating character.

Corollary 10.5.2. Over any finite ring R, the MacWilliams identities
hold in the setting of a nondegenerate bilinear form β : RA×BR → E,
where E is a Frobenius bimodule.

Proof. It follows from Lemmas 3.2.3 and 3.2.4 that a Frobenius bimod-
ule admits a generating character. �

Theorem 10.5.3. A finite ring is Frobenius if and only if it admits a
generating character %.

Proof. This is a restatement of Theorem 3.4.1. �

Corollary 10.5.4. Over a Frobenius ring R, the MacWilliams identi-
ties hold in the setting of a nondegenerate bilinear form β : RA×BR →
RRR.

10.6. A degenerate case. In the preceding subsections, many of the
results have had the form: assume a “nondegeneracy” condition on the
ground ring, and then conclude a result valid for all submodules. In
this subsection we make no assumptions about the ground ring, and
instead make hypotheses on the submodules.

The following result is due to Duursma and concerns the double
annihilator property. For an R-module M , define the R-linear dual of
M by M ] := HomR(M,R). The functor ] interchanges sides, so that
M ] is a right R-module when M is a left R-module, and vice versa. An
R-module M is torsionless if the natural map M → M ]] is injective.
Duursma’s theorem is that a linear code C ⊂ Rn satisfies the double
annihilator property if and only if the quotient module M = Rn/C is
torsionless. We use the notation from subsection 10.3.

Theorem 10.6.1 (Duursma). Suppose R is a finite ring and C ⊂ Rn

is a left linear code. Let M = Rn/C be the quotient module associ-
ated to C. Then l(r(C)) = C if and only if the quotient module M
is torsionless. In that case, the right annihilator D = r(C) satisfies
r(l(D)) = D, as well.
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Similarly, when D ⊂ Rn is a right linear code, r(l(D)) = D if and
only if Rn/D is torsionless. In that case, the left annihilator C = l(D)
satisfies l(r(C)) = C.

Proof. Adapt [24, Exercise 15.6] to the setting of C ⊂ Rn. �

Over a quasi-Frobenius ring, Rn/C is always torsionless, so that
Proposition 10.3.1 follows from Theorem 10.6.1.

11. Other weight enumerators

In this section we discuss two other weight enumerators, the full
weight enumerator and the complete weight enumerator.

11.1. Full and complete weight enumerators. In discussing these
two weight enumerators, we follow, in part, the treatment of this ma-
terial in [30].

Let G be a finite abelian group. The full weight enumerator of a
code C ⊂ Gn is essentially a copy of the code inside the complex group
ring C[Gn]. Recall that the complex group ring C[Gn] is the set of all
formal complex linear combinations of elements of Gn. One way to
notate C[Gn] is to introduce formal symbols ex for every x ∈ Gn. Then
an element of C[Gn] has the form∑

x∈Gn

αxex,

where αx ∈ C. Addition in C[Gn] is performed term-wise:
∑
αxex +∑

βxex =
∑

(αx + βx)ex. Multiplication is as for polynomials, using
the rule exey = ex+y, where the latter is the formal symbol associated
to the sum x+ y in the group Gn.

Given a code C ⊂ Gn, the full weight enumerator of C is

fweC(e) =
∑
x∈C

ex ∈ C[Gn].

A notational convention: suppose B is a matrix of size |Gn|×|Gn| whose
rows and columns are parameterized by elements of Gn. Consider e =
(ex) as a column vector, and formally multiply to obtain e′ = Be, where

e′x :=
∑
y∈Gn

Bx,yey.

This allows us to change variables in fweC ; for example,

fweC(Be) = fweC(e′) =
∑
x∈C

e′x =
∑
x∈C

∑
y∈Gn

Bx,yey.
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The complete weight enumerator will be an element of a certain
polynomial ring, which we now define. For every x ∈ G, let Zx be
an indeterminate. Form the polynomial ring on these indeterminates:
C[Zx : x ∈ G]. We will write C[(Z)] for short.

Given a code C ⊂ Gn, the complete weight enumerator of C is

cweC((Z)) =
∑
x∈C

n∏
i=1

Zxi
=
∑
x∈C

∏
y∈G

Zcy(x)
y ∈ C[(Z)],

where cy(x) = |{i : xi = y}| counts the number of components of
x ∈ Gn that equal the element y ∈ G. To change variables, suppose B
is a matrix of size |G|× |G| whose rows and columns are parameterized
by the elements of G. Consider (Z) as a column vector and formally
multiply to obtain (Z ′) = B(Z), where Z ′x =

∑
y∈GBx,yZy.

To maintain some consistency of the notation with [30], denote the
Hamming weight enumerator by

hweC(X, Y ) = WC(X, Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) ∈ C[X, Y ].

These three weight enumerators are related by specialization of vari-
ables. If ex ∈ C[Gn] is replaced by

n∏
i=1

Zxi
=
∏
y∈G

Zcy(x)
y ,

then the full weight enumerator specializes to the complete weight enu-
merator. More precisely, define a mapping:

C[Gn]→ C[(Z)],
∑
x∈Gn

αxex 7→
∑
x∈Gn

αx

n∏
i=1

Zxi
.

Observe that this mapping is a homomorphism of vector spaces over
C, and it maps fweC to cweC for any code C ⊂ Gn. (Even though
C[Gn] and C[(Z)] are algebras over C, the mapping above does not
preserve multiplication.) For x ∈ C, information on the counts cy(x) is
preserved in cweC , but the information on which coordinate positions
have which values is lost from fweC .

Similarly, if Z0 is replaced by X and all the other Zy, y 6= 0, are
replaced by Y , then the complete weight enumerator specializes to the
Hamming weight enumerator, with a corresponding loss of information.
More precisely, define a mapping as follows:

C[(Z)]→ C[X, Y ], Z0 7→ X, Zy 7→ Y (y 6= 0).
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This map is a homomorphism of algebras over C, and it takes cweC to
hweC for any code C ⊂ Gn.

11.2. MacWilliams identities. We develop the MacWilliams identi-
ties for the full weight enumerator and the complete weight enumerator
in the context of Proposition 9.3.1. That is, we assume β : G × G →
Q/Z is a nondegenerate biadditive form, so that χ, ψ : G→ Ĝ provide

isomorphisms between G and Ĝ. The notation is from Subsection 9.3.
As for the Hamming weight enumerator hwe, the MacWilliams iden-

tities for fwe and cwe are derived using the Poisson summation for-

mula. Define e : Gn → C[Gn] by x 7→ ex. If we use χ : G → Ĝ,
χ(x) = β(x,−), to make identifications, then the Fourier transform is

ê(x) =
∑
y∈Gn

exp(2πiβ(x, y)) ey, x ∈ Gn.

The Poisson summation formula then yields

fweC(e) =
∑
x∈C

ex =
1

|l(C)|
∑
x∈l(C)

ê(x).

The sum on the right side can be viewed as fwel(C) under the linear
change of variables

ex 7→
∑
y∈Gn

exp(2πiβ(x, y)) ey.

That is, define a matrix B of size |Gn| × |Gn| whose rows and columns
are parameterized by elements of Gn. In position (x, y), set Bx,y =
exp(2πiβ(x, y)). Then

fweC(e) =
1

|l(C)|
fwel(C)(Be).

Similarly, if one uses instead ψ : G → Ĝ to make identifications, then
one has

fweC(e) =
1

|r(C)|
fwer(C)(Bte).

By specializing variables, we get similar MacWilliams identities for
the complete weight enumerator:

cweC((Z)) =
1

|l(C)|
cwel(C)(B(Z)),

cweC((Z)) =
1

|r(C)|
cwer(C)(B

t(Z)),

where the change of variable matrix B has rows and columns parame-
terized by elements of G and Bx,y = exp(2πiβ(x, y)).
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The next result can be viewed as a degenerate version of Theo-
rem 10.5.1. It has been adapted from a result of Klemm [22, Satz 1.2].

Theorem 11.2.1. Let R be a finite ring, and let β : Rn×Rn → R be the
standard dot product. Suppose % is any character on R, % : R→ Q/Z.
Let β′ : Rn × Rn → Q/Z be given by β′ = % ◦ β. For left submodules
C ⊂ Rn and right submodules D ⊂ Rn, the MacWilliams identities
hold in the following form:

cwer′(C)((Z)) =
1

|C|
cweC((PZ)),

cwel′(D)((Z)) =
1

|D|
cweD((P tZ)),

where P is the matrix of size |R| × |R| with rows and columns param-
eterized by elements of R and Pr,s = ρ(rs).

Proof. Use Theorem 9.1.3 twice, with τ = χ′ and τ = ψ′, where χ′ :

Rn → R̂n is χ′a(b) = β′(a, b) and ψ′ : Rn → R̂n is ψ′b(a) = β′(a, b). �
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[36] M. A. Tsfasman and S. G. Vlăduţ, Algebraic-geometric codes, Mathematics and
its Applications (Soviet Series), vol. 58, Kluwer Academic Publishers Group,
Dordrecht, 1991.

[37] J. H. van Lint and R. M. Wilson, A course in combinatorics, Cambridge Uni-
versity Press, Cambridge, 1992.

[38] H. N. Ward and J. A. Wood, Characters and the equivalence of codes, J. Com-
bin. Theory Ser. A 73 (1996), no. 2, 348–352.

[39] J. A. Wood, Extension theorems for linear codes over finite rings, Applied alge-
bra, algebraic algorithms and error-correcting codes (Toulouse, 1997) (T. Mora
and H. Mattson, eds.), Lecture Notes in Comput. Sci., vol. 1255, Springer,
Berlin, 1997, pp. 329–340.

[40] , Duality for modules over finite rings and applications to coding theory,
Amer. J. Math. 121 (1999), no. 3, 555–575.

[41] , Weight functions and the extension theorem for linear codes over finite
rings, Finite fields: theory, applications, and algorithms (Waterloo, ON, 1997)
(R. C. Mullin and G. L. Mullen, eds.), Contemp. Math., vol. 225, Amer. Math.
Soc., Providence, RI, 1999, pp. 231–243.

[42] , Factoring the semigroup determinant of a finite chain ring, Cod-
ing Theory, Cryptography and Related Areas (J. Buchmann, T. Høholdt,
H. Stichtenoth, and H. Tapia-Recillas, eds.), Springer, Berlin, 2000, pp. 249–
259.

[43] , The structure of linear codes of constant weight, Trans. Amer. Math.
Soc. 354 (2002), no. 3, 1007–1026.

[44] , Code equivalence characterizes finite Frobenius rings, Proc. Amer.
Math. Soc. 136 (2008), 699–706.

Department of Mathematics, Western Michigan University, 1903 W.
Michigan Ave., Kalamazoo, MI 49008–5248

E-mail address: jay.wood@wmich.edu
URL: http://homepages.wmich.edu/∼jwood


