ENGR 1990 Engineering Mathematics
Lab/Recitation #4 – Trigonometry

1. The lengths and angles of a two link planar robot are \(\ell_1 = 4 \) (ft), \(\ell_2 = 3 \) (ft), \(\theta_1 = 30 \) (deg), and \(\theta_2 = 45 \) (deg). Find the Cartesian coordinates \(x \) and \(y \) of \(B \) using: a) a calculator to evaluate the trigonometric functions, and b) the values given for commonly used angles.

2. The lengths and angles of a two link planar robot are \(\ell_1 = 4 \) (ft), \(\ell_2 = 3 \) (ft), \(\theta_1 = -45 \) (deg), and \(\theta_2 = 60 \) (deg). Find the Cartesian coordinates \(x \) and \(y \) of \(B \) using: a) a calculator to evaluate the trigonometric functions, and b) the values given for commonly used angles.

3. The \(XY \) coordinates of the end point \(B \) and the lengths of the links \(OA \) and \(AB \) are \(x = 5.5 \) (ft), \(y = -2 \) (ft), \(\ell_1 = 4 \) (ft), and \(\ell_2 = 3 \) (ft). Find: (a) the angles \(\alpha \) and \(\beta \), and (b) the link angles \(\theta_1 \) and \(\theta_2 \) for the elbow-down position. Express all angles in both degrees and radians.