ENGR 1990 Engineering Mathematics
Lab/Recitation #5 – 2D Vectors

1. A force \(\mathbf{F} \) has a magnitude \(|\mathbf{F}| = 175 \text{ (lb)} \) and makes an angle \(\theta = 30 \text{ (deg)} \) with the \(X \) axis. Express the force \(\mathbf{F} \) in terms of the unit vectors \(\mathbf{i} \) and \(\mathbf{j} \).

2. A force \(\mathbf{F} \) has a magnitude \(|\mathbf{F}| = 175 \text{ (lb)} \) and makes an angle \(\theta = -120 \text{ (deg)} \) with the \(X \) axis. Express the force \(\mathbf{F} \) in terms of the unit vectors \(\mathbf{i} \) and \(\mathbf{j} \).

3. A force \(\mathbf{F} = -65 \mathbf{i} + 120 \mathbf{j} \) (lbs). Find the magnitude of \(\mathbf{F} \) and the angle between it and the \(\mathbf{i} \) direction. Express the angle in both degrees and radians.

4. A force \(\mathbf{F} = 58 \mathbf{i} + 75 \mathbf{j} \) (lbs). Find the magnitude of \(\mathbf{F} \) and the angle between it and the \(\mathbf{i} \) direction. Express the angle in both degrees and radians.

5. Given the three forces and angles \(|\mathbf{F}_1| = 165 \text{ (lbs)} \), \(\theta_1 = 30 \text{ (deg)} \), \(|\mathbf{F}_2| = 120 \text{ (lbs)} \), \(\theta_2 = 30 \text{ (deg)} \), and \(|\mathbf{F}_3| = 110 \text{ (lbs)} \), \(\theta_3 = 60 \text{ (deg)} \), find (a) the total force \(\mathbf{F} \) in terms of the unit vectors \(\mathbf{i} \) and \(\mathbf{j} \), (b) the magnitude of \(\mathbf{F} \), (c) the angle that \(\mathbf{F} \) makes with the \(\mathbf{i} \) direction, and (d) a unit vector in the direction of \(\mathbf{F} \).

6. Given a force \(\mathbf{F} = -100 \mathbf{i} + 80 \mathbf{j} \) (lbs) and a unit vector \(\mathbf{n} = \frac{4}{5} \mathbf{i} + \frac{3}{5} \mathbf{j} \), find (a) the angle between the two vectors, (b) \(\mathbf{F}_\parallel \) the component of \(\mathbf{F} \) parallel to \(\mathbf{n} \), and (c) \(\mathbf{F}_\perp \) the component of \(\mathbf{F} \) perpendicular to \(\mathbf{n} \). Express all vectors in terms of unit vectors \(\mathbf{i} \) and \(\mathbf{j} \).