ENGR 1990 Engineering Mathematics
Lab/Recitation #6 – 2D Vectors, Complex Numbers

1. Given a 200 (lb.) force F that acts at an angle $\theta = -30^\circ$, and a line L that passes through the points $A(3,4)$ and $B(10,7)$, complete the following. (a) Find a unit vector \mathbf{n} that is parallel to line L. (b) Find the angle ϕ between F and L. (c) Find F_\parallel the component of F parallel to L. (d) Find F_\perp the component of F perpendicular to L. Express the angle in degrees and radians and all vectors in terms of unit vectors \mathbf{i} and \mathbf{j}.

2. A 500 (lb.) force F acts at C on the L-shaped bracket at an angle $\theta = 60^\circ$. (a) Find M_A the moment of F about A. (b) Find d_A the perpendicular distance from A to the line of action of F. (c) Find M_B the moment of F about B. (b) Find d_B the perpendicular distance from B to the line of action of F.

3. A voltage $v(t)=110\cos(120\pi t)$ volts is applied to the RL series circuit with $R=100\ \Omega$ and $L=500\ \text{mh}$. Given that the total impedance is $Z=Z_R+Z_L$, find
 a) Z in both rectangular and polar form
 b) I the complex current in both rectangular and polar form
 c) $i(t)$ the current as a function of time

4. A voltage $v(t)=110\cos(120\pi t)$ volts is applied to the RL parallel circuit with $R=100\ \Omega$ and $L=500\ \text{mh}$. Given that the equivalent impedance is $Z_{eq}=\frac{Z_RZ_L}{Z_R+Z_L}$, find
 a) Z_{eq} in both rectangular and polar form
 b) I the complex current in both rectangular and polar form
 c) $i(t)$ the current as a function of time

Impedances for AC circuit elements: $Z_R=R$, $Z_C=\frac{-j}{\omega C}$, and $Z_L=j\omega L$

Complex form of Ohm’s Law: $V=IZ$