1. A ball is thrown off a tower at a height of 60 (ft) at a speed of 50 (ft/s) as shown. The \(X \) and \(Y \) positions of the ball are given as functions of time.

\[
x(t) = 30t \quad \text{(ft)} \quad y(t) = 60 + 40t - 16.1t^2 \quad \text{(ft)}
\]

Using the table of derivatives and the rules for differentiation, find

(a) \(\dot{x}(t) \) and \(\ddot{x}(t) \) the first and second time derivatives of \(x(t) \)
(b) \(\dot{y}(t) \) and \(\ddot{y}(t) \) the first and second time derivatives of \(y(t) \)
(c) the slope of \(y(t) \) when \(t = 2 \) (sec)
(d) the time \(t^* \) when the ball reaches its maximum height
(e) the \(X \) and \(Y \) coordinates of the ball when it reaches its maximum height
(f) \(\mathbf{V} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j} \) the velocity vector of the ball at \(t = 2 \) (sec)
(g) \(y(x), \frac{dy}{dx}(x), y''(x) = \frac{d^2y}{dx^2}(x) \)
(h) using the results of part (g), find the \(X \) coordinate of the ball when it reaches its maximum height
(i) find the equation of the line that is tangent to \(y(x) \) at \(x = 80 \) (ft)

2. A spring-mass system with \(m = 2 \) (slugs), \(k = 72 \) (lb/ft), and no damping is shown in the diagram. The system is given an initial displacement of \(x_0 = 1 \) (ft) and initial velocity of \(v_0 = 9 \) (ft/s).

a) Find \(x(t) \) as a sum of sine and cosine functions.
b) Find \(x(t) \) as a single sine function with magnitude and phase.
c) Find the time when the mass first reaches its largest displacement.
d) Find \(T \) the period of the oscillation.
e) Find \(v(t) = \frac{dx}{dt} \) the velocity of the mass as a single sine function.
f) Find \(a(t) = \frac{dv}{dt} \) the acceleration of the mass as a single sine function.
g) Find the first time when the velocity \(v(t) \) is maximum or minimum. Is it a maximum or minimum?
3. The response of an over-damped, spring-mass-damper system is

\[x(t) = 3e^{-5t} - 2e^{-20t} \text{ (ft)} \]

Using the table of derivatives and the rules for differentiation, find

a) \(v(t) = \dot{x}(t) \) the velocity function
b) \(a(t) = \ddot{v}(t) = \ddot{x}(t) \) the acceleration function
c) \(x(0), v(0), a(0) \) the initial position, velocity and acceleration of \(m \)
d) the time \(t^* \) when \(m \) has its maximum downward displacement