1. Given the weight $W = 1000$ (lbs), find F_{AB} and F_{AC} the forces in the supporting wires by setting the sum of the forces to zero at A. Use Cramer’s rule.

![Diagram of forces](image)

2. For the double-loop DC circuit shown, the currents I_1 and I_2 can be found by solving the boxed simultaneous equations. Given the resistances $R_1 = 7(\Omega)$, $R_2 = 4(\Omega)$, and $R_3 = 5(\Omega)$, and the voltages $V_1 = 24$ (volts), and $V_2 = 12$ (volts), find the currents I_1 and I_2 using substitution.

\[
\begin{align*}
(R_1 + R_3)I_1 + (R_3)I_2 &= V_1 \\
(R_3)I_1 + (R_2 + R_3)I_2 &= V_2
\end{align*}
\]

![Diagram of circuit](image)

3. The currents shown in the table were measured in the series RC circuit after the switch was closed. Given that the current is given by an exponential function $i(t) = Be^{\alpha t}$, estimate the decay rate α.

<table>
<thead>
<tr>
<th>t (sec)</th>
<th>$i(t)$ (amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.3679</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1353</td>
</tr>
<tr>
<td>0.3</td>
<td>0.04979</td>
</tr>
</tbody>
</table>

![Diagram of RC circuit](image)
4. **Given:** \(m = 2 \text{ (slugs)} \), \(k = 200 \text{ (lb/ft)} \), \(c = 44 \text{ (lb-s/ft)} \)
\(y(t = 0) = -0.25 \text{ (ft)} \), \(v(t = 0) = -10 \text{ (ft/s)} \)

Find: \(y(t) \)

5. **Given:** \(m = 2 \text{ (slugs)} \), \(k = 200 \text{ (lb/ft)} \), \(c = 10 \text{ (lb-s/ft)} \)
\(y(t = 0) = -0.5 \text{ (ft)} \), \(v(t = 0) = -5 \text{ (ft/s)} \)

Find: \(y(t) \)
Express the result as an exponential function times a single, phase-shifted sine function.

6. A ball is thrown off a tower at a height of 30 (ft) as shown. The path of the ball is given by the function
\(y(x) = 30 + 5x - 0.16 x^2 \text{ (ft)} \).

a) Find \(y'(x) = \frac{dy}{dx}(x) \), \(y''(x) = \frac{d^2y}{dx^2}(x) \)

b) Using the results of part (a), find the \(X \) coordinate of the ball when it reaches its maximum height.

c) Find the equation of the line that is tangent to \(y(x) \) at \(x = 30 \text{ (ft)} \).

7. A spring-mass system with \(m = 2 \text{ (slugs)} \), \(k = 98 \text{ (lb/ft)} \), and no damping is shown in the diagram. The system is given an initial displacement of \(x_0 = 2 \text{ (ft)} \) and initial velocity of \(v_0 = 7 \text{ (ft/s)} \).

a) Find \(x(t) \) as a single, phase-shifted cosine function.

b) Find the time when the mass first reaches its largest displacement.

c) Find \(T \) the period of the oscillation.

d) Find \(v(t) = \frac{dx}{dt} \) the velocity of the mass.

e) Find \(a(t) = \frac{dv}{dt} \) the acceleration of the mass.

f) Find the first time when the velocity \(v(t) \) is maximum or minimum.