ENGR 1990 Engineering Mathematics
Lab/Recitation #12 – Applications of Derivatives II

1. The response of an under-damped, spring-mass-damper system is
 \[x(t) = e^{-3t} (3\sin(10t) + 2\cos(10t)) \text{ (ft)} \]

 Using the table of derivatives and the rules for differentiation, find
 a) \(v(t) = \dot{x}(t) \) the velocity function
 b) \(x(0), v(0) \) the initial position and velocity of \(m \)
 c) the time \(t^* \) when \(m \) has its maximum downward displacement

2. A voltage \(v(t) = 100e^{-20t} \sin(20\pi t) \) (volts) is applied to a capacitor with \(C = 50 \) (\(\mu \)F). Using the table of derivatives and the rules for differentiation, find the current \(i(t) \) as an exponential function times a single, phase-shifted cosine function. Given:
 \[i(t) = C \frac{dv}{dt} \]

3. A current \(i(t) = 25t e^{-5t} \) (amps) is applied to an inductor with \(L = 500 \) (mH). Using the table of derivatives and the rules for differentiation, find
 a) the time \(t^* \) when the current is maximum
 b) \(v(t) \) the voltage across the inductor. \[v(t) = L \frac{di}{dt} \]