ENGR 1990 Engineering Mathematics
Lab/Recitation #14 – Review for Final Exam

1. a) A force \(F \) has a magnitude of 500 (lb) and acts at an angle of \(\theta = 120 \) (deg) to the positive \(X \)-axis. Express \(F \) in terms of the unit vectors \(i \) and \(j \).

b) A unit vector \(n \) is pointed along a line that passes through the points \(A \) and \(B \). The \(XY \) coordinates of the two points are \(A(2,3) \) inches and \(B(7,15) \) inches. Express \(n \) in terms of the unit vectors \(i \) and \(j \).

c) Find \(F_\parallel \) the component of \(F \) that is parallel to \(n \).

2. a) A force \(F \) has a magnitude of 500 (lb) and acts at an angle of \(\theta = 120 \) (deg) to the positive \(X \)-axis. The force is located at a point \(A \) with coordinates \((5,2) \) inches. Find \(M \), the moment of the force about the origin \((0,0) \).

b) Find \(d \) the perpendicular distance from the line of action of \(F \) to the origin \((0,0) \).

3. A weight of 500 (lb) is supported by the two wires as shown. By setting the sum of the forces acting at point \(A \) to zero \((\sum F = 0) \), complete the following.

a) Find the two equations that must be solved to find the magnitudes of the forces \(F_1 \) and \(F_2 \).

b) Solve the two simultaneous equations using substitution and Cramer’s rule.

4. A voltage \(v(t) = 220 \cos(120\pi t) \) volts is applied to the RLC series circuit with \(R = 100 \) \(\Omega \), \(C = 50 \mu F \), and \(L = 500 \) mh. Given that the total impedance is \(Z = Z_R + Z_C + Z_L \), find

a) \(Z \) in both rectangular and polar form

b) \(I \) the complex current in both rectangular and polar form

c) \(i(t) \) the current as a function of time

5. A voltage \(v(t) = 110 \cos(120\pi t) \) volts is applied to the RLC parallel circuit with \(R_1 = R_2 = 100 \) \(\Omega \), \(C = 25 \mu F \), and \(L = 500 \) mh. Given that \(Z_1 = Z_{R_1} + Z_C \) and \(Z_2 = Z_{R_2} + Z_L \), find

a) \(Z_{eq} = \frac{Z_1Z_2}{Z_1+Z_2} \) in polar form.

b) \(I \) the complex current in polar form

c) \(i(t) \) the total current as a function of time
6. A spring-mass system with $m = 0.5$ (slugs), $k = 32$ (lb/ft), and no damping is shown in the diagram. The system is given an initial displacement of $x_0 = 0.4$ (ft) and initial velocity of $v_0 = 2.4$ (ft/s). Find (a) $x(t)$ as a single, phase shifted sine function, (b) the time when the mass first reaches its largest displacement, c) T the period of the oscillation, and d) $v(t) = \frac{dx}{dt}$.

7. The motion of a mass spring damper system is given by the equation $
 x(t) = e^{-2t} [3 \sin(10t) + 4 \cos(10t)] \text{ (inches)}.
$

a) Express $x(t)$ using a single, phase-shifted sine function.

b) Find the velocity function $v(t) = \frac{dx}{dt}$. Express your result using a single, phase shifted sine function.

8. A car has the acceleration profile shown. Its initial position is $s(0) = 0$ and its initial velocity is $v(0) = 5$ (m/s).

a) Find the velocity function $v(t)$ given that $v(t) = \int a(t) dt$.

b) Find the displacement function $s(t)$ given that $s(t) = \int v(t) dt$.

c) Find the velocity of the car at $t = 20$ (s).

d) Find the total distance traveled by the car for $0 \leq t \leq 20$ (s).

e) Sketch the velocity and position functions given that

$$\Delta v_{t_1}^{t_2} = \int_{t_1}^{t_2} a(t) dt = \text{Area under the acceleration profile from } t_1 \text{ to } t_2$$

$$\Delta s_{t_1}^{t_2} = \int_{t_1}^{t_2} v(t) dt = \text{Area under the velocity profile from } t_1 \text{ to } t_2$$

9. A voltage $v(t) = 75 e^{-3t}$ (volts) is applied to an inductor with inductance $L = 250$ (mh). Find the current $i(t)$, given that $i(t) = \frac{1}{L} \int v(t) dt$. Assume $i(0) = 0$.
