ME 2560 Statics
Moment of a Force about an Axis

Two Dimensional Systems

- The moment of a force about a point O may be calculated using a cross product.
 \[M_O = r \times \vec{F} \]

- Here, M_O is perpendicular to the plane formed by the vectors \vec{r} and \vec{F}, and it has magnitude $|M_O| = |\vec{F}| d = |\vec{F}| r \sin(\theta)$.

- In the two dimensional system shown, M_O represents the moment of the force about an axis perpendicular to the page (in the \vec{k} direction) and passing through O.

![Diagram of moment in two dimensions](image)

Three Dimensional Systems

- To find the moment of a force about an axis in three dimensional analysis, we first calculate the moment about any point on that axis, say O, then we project that moment onto the axis using the dot product.
 \[M_{\text{\textbar{g}-axis}} = M_O \cdot \vec{n} = (r \times \vec{F}) \cdot \vec{n} \]

- Here, $M_{\text{\textbar{g}-axis}}$ is the scalar moment of \vec{F} about the axis passing through O and parallel to the unit vector \vec{n}. In vector form, we write $M_{\text{\textbar{g}-axis}} = (M_O \cdot \vec{n}) \vec{n}$.

- $M_{\text{\textbar{g}-axis}}$ can be positive or negative depending on the angle between \vec{n} and M_O. If it is positive, point your right thumb in the direction of \vec{n} and your right fingers will show the circulation of \vec{F} about the axis. If it is negative, point your right thumb opposite the direction of \vec{n} and your right fingers will show the circulation of \vec{F} about the axis.

- As before, \vec{r} is a position vector from O to any point on the line of action of \vec{F}.
Example:

Given: \(F = -100 \hat{i} + 50 \hat{j} + 200 \hat{k} \) (lb); \(A: (3,4,5) \) (ft)

Find: \(a) \ M_x, \ M_y, \ \text{and} \ M_z \) the moments of \(F \) about the \(X, Y, \) and \(Z \) axes, \(b) \ M_{n-axis} \) the scalar moment of \(F \) about an axis in the \(X-Y \) plane that makes an angle of 30 (deg) with the \(X \)-axis, and \(c) \ M_{\hat{n}-axis} \)

Solution:

\(a) \ M_O = r_{AO} \times F \)

\[
\begin{vmatrix}
i & j & k \\
3 & 4 & 5 \\
-100 & 50 & 200 \\
\end{vmatrix} = (800 - 250) \hat{i} - (600 + 500) \hat{j} + (150 + 400) \hat{k}
\]

\[
= 550 \hat{i} - 1100 \hat{j} + 550 \hat{k} \text{ (ft-lb)}
\]

\[
M_x = M_O \cdot \hat{i} = 550 \text{ (ft-lb)}, \quad M_y = M_O \cdot \hat{j} = -1100 \text{ (ft-lb)}, \quad M_z = M_O \cdot \hat{k} = 550 \text{ (ft-lb)}
\]

\(b) \ n = \cos(30) \hat{i} + \sin(30) \hat{j} \)

\[
M_{n-axis} = M_O \cdot n = (550 \cos(30)) + (-1100 \cdot \sin(30)) + (550 \cdot 0) = -73.686 \approx -73.7 \text{ (ft-lb)}
\]

\(c) \ M_{\hat{n}-axis} = (M_O \cdot n) n = -73.686 n = -63.8 \hat{i} - 36.8 \hat{j} \text{ (ft-lb)}
\]

Note on Calculation of the Scalar Moment: \(M_{\hat{n}-axis} \)

- Calculation of the scalar moment can also be done in determinant form. Simply replace the first row of the determinant by the components of \(n \) and expand as usual.

\[
M_{\hat{n}-axis} = \begin{vmatrix}
n_x & n_y & n_z \\
r_x & r_y & r_z \\
F_x & F_y & F_z \\
\end{vmatrix} = n_x (r_y F_z - r_z F_y) - n_y (r_x F_z - r_z F_x) + n_z (r_x F_y - r_y F_x)
\]

- So, for the above example, we have

\[
M_{\hat{n}-axis} = \begin{vmatrix}
\cos(30) & \sin(30) & 0 \\
3 & 4 & 5 \\
-100 & 50 & 200 \\
\end{vmatrix} = \cos(30)(800 - 250) - \sin(30)(600 + 500)
\]

\[
\approx -73.7 \text{ (ft-lb)}
\]