Homework#2 (2/1) Answers
ME 3600 Control Systems

1. E2.2: \[\Delta R = -135.3 \Delta T \]

2. E2.11:
 a) \[\Delta f = \left(\frac{50}{0.015} \right) \Delta x = 3333 \Delta x, \text{ so } k = 3333 \text{ (N/m)} \]
 b) \[\Delta f = \left(\frac{40}{0.02} \right) \Delta x = 2000 \Delta x, \text{ so } k = 2000 \text{ (N/m)} \]
 c) \[\Delta f = \left(\frac{14}{0.04} \right) \Delta x = 350 \Delta x, \text{ so } k = 350 \text{ (N/m)} \]

3. E2.18:
 a) \((x_0 = 1, y_0 = 2.4), (x_0 = 2, y_0 = 13.2) \)
 b) \(\{x_0 = 1, \Delta y = 5.2\Delta x\}, \{x_0 = 2, \Delta y = 17.8\Delta x\} \)

4. P2.5:
 a) Define \(R = P_1 - P_2 \); Operating point = \(R_0 = (P_1-P_2)_o \)
 \[\Delta Q = \left[\frac{K}{2\sqrt{P_1 - P_2}} \right] \Delta R \]
 \(R = R_0 \)
 b) When \(R_0 = (P_1-P_2)_o = 0 \), no linear model exists.

5. E2.26:
 \[m_1 \ddot{x}_1 + kx_1 - kx_2 = F(t) \]
 \[m_2 \ddot{x}_2 + kx_2 - kx_1 = 0 \]
 (\(x_1 \) and \(x_2 \) are measured from the equilibrium positions.)

6. P2.2:
 \[M_1 \ddot{y}_1 + b\dot{y}_1 + (k_1 + k_{12})y_1 - k_{12}y_2 = F(t) \]
 \[M_2 \ddot{y}_2 - k_{12}y_1 + k_{12}y_2 = 0 \]
 (\(y_1 \) and \(y_2 \) are measured from the equilibrium positions.)

7. P2.3:
 \[M \dddot{x}_1 + (2K)x_1 - Kx_2 = F(t) \]
 \[M \dddot{x}_2 + b\dot{x}_2 - Kx_1 + Kx_2 = 0 \]
 (\(x_1 \) and \(x_2 \) are measured from the equilibrium positions.)

8. P2.34:
 \[m_1 \dddot{y}_1 + b(\dot{y}_1 - \dot{y}_2) + k_1(y_1 - y_2) = 0 \]
 \[m_2 \dddot{y}_2 + b(\dot{y}_2 - \dot{y}_1) + (k_1 + k_2)y_2 - k_1y_1 = k_2x(t) \]
 (\(y_1 \) and \(y_2 \) are measured from the equilibrium positions on level ground.)
 (\(x(t) \) is measured from level ground.)