ME 4590 Dynamics of Machinery
Constraint Relaxation Method: The Meaning of Lagrange Multipliers

Previously, we noted that if a dynamic system is described using "n" generalized coordinates \(q_k \) \((k=1,\ldots,n)\), and if the system is subjected to "m" independent configuration constraint equations of the form

\[
\sum_{k=1}^{n} a_{jk} \dot{q}_k + a_{j0} = 0 \quad (j=1,\ldots,m)
\]

then we can find the equations of motion of the system by using one of the following two forms of Lagrange's equations with Lagrange multipliers.

\[
\frac{d}{dt} \left(\frac{\partial K}{\partial \dot{q}_k} \right) - \frac{\partial K}{\partial q_k} = F_{q_k} + \sum_{j=1}^{m} \lambda_j a_{jk} \quad (k=1,\ldots,n)
\]

or

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = \left(F_{q_k} \right)_{nc} + \sum_{j=1}^{m} \lambda_j a_{jk} \quad (k=1,\ldots,n)
\]

Here, \(K \) is the kinetic energy of the system, \(F_{q_k} \) is the generalized force associated with the generalized coordinate \(q_k \), \(L \) is the Lagrangian of the system, \(V \) is the potential energy function for the conservative forces and torques, \((F_{q_k})_{nc} \) is the generalized force associated with \(q_k \) for the non-conservative forces and torques, only, \(\lambda_j \) is the Lagrange multiplier associated with the \(j^{th} \) constraint equation, and \(a_{jk} \) \((j=1,\ldots,m; \ k=1,\ldots,n)\) are the coefficients from the constraint equations. Equations (1.1) and Equations (1.2) or (1.3) form a set of \(n+m \) differential/algebraic equations for the \(n \) generalized coordinates and the \(m \) Lagrange multipliers.

Alternatively, we can relax (or remove) some or all the constraints and replace them with force and/or torque components that are required to maintain the constraints. Then, we formulate the \(n \) Lagrange's equations in terms of the \(n \) generalized coordinates and the \(m \) constraint force (or torque) components. Together with the constraint equations, this forms a set of \(n+m \) differential/algebraic equations for the \(n \) generalized coordinates and the \(m \) constraint force and/or torque components. If all the constraints are relaxed, then Equations (1.2) and (1.3) can be written as
\[
\frac{d}{dt}\left(\frac{\partial K}{\partial \dot{q}_k}\right) - \frac{\partial K}{\partial q_k} = F_{q_k} + \left(F_{q_k}\right)_{\text{constraints}} \\
(k = 1, \ldots, n) \tag{1.4}
\]

and

\[
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = \left(F_{q_k}\right)_{\text{nc}} + \left(F_{q_k}\right)_{\text{constraint}} \\
(k = 1, \ldots, n) \tag{1.5}
\]

Example: The Simple Pendulum

For the simple pendulum shown at the right, we will use \(q_1 = x \) and \(q_2 = y \) as the generalized coordinates, and we will relax the length constraint of the pendulum in the formulation. In this case, Lagrange's equations can be written in the form

\[
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = \left(F_{q_k}\right)_{\text{nc}} + \left(F_{q_k}\right)_{\text{constraint}} \tag{1.6}
\]

where \(L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) + mgy \) and \((F_{q_k})_{\text{nc}} = 0 \), and the contributions of the constraint force to the right hand sides of the equations are

\[
(F_x)_{\text{constraint}} = T \cdot (\dot{\gamma}y/\partial \dot{x}) = T\left(-(x/L)\dot{\dot{x}} - (y/L)\dot{\dot{y}}\right) \cdot \partial(\dot{x}\dot{\dot{x}} + \dot{y}\dot{\dot{y}})/\partial \dot{x} = -T(x/L) \tag{1.7}
\]

\[
(F_y)_{\text{constraint}} = T \cdot (\dot{\gamma}y/\partial \dot{y}) = T\left(-(x/L)\dot{\dot{x}} - (y/L)\dot{\dot{y}}\right) \cdot \partial(\dot{x}\dot{\dot{x}} + \dot{y}\dot{\dot{y}})/\partial \dot{y} = -T(y/L) \tag{1.8}
\]

Substituting into Lagrange's equations (1.4) and supplementing with the twice differentiated constrain equation give the following equations of motion

\[
\begin{align*}
mx\dddot{x} + \left(\frac{\dot{x}}{T}\right)T &= 0 \\
m\dddot{y} - mg + \left(\frac{\dot{y}}{T}\right)T &= 0 \\
x\dddot{x} + y\dddot{y} + \dot{x}^2 + \dot{y}^2 &= 0
\end{align*} \tag{1.9}
\]

Using Lagrange multipliers, we showed in previous notes that the equations for the pendulum could be written as
\[
\begin{align*}
 m\ddot{x} - \lambda x &= 0 \\
 m\ddot{y} - mg - \lambda y &= 0 \\
 \ddot{x} + \ddot{y} + \dot{x}^2 + \dot{y}^2 &= 0
\end{align*}
\] (1.10)

Comparing Equations (1.7) and (1.8), we see that the Lagrange multiplier λ is equal to T/L the force per unit pendulum length.

Note: In general, the Lagrange multipliers will be related to the forces and/or torques required to maintain the constraints.