Solve the following problems using Lagrange’s equations. Use the generalized coordinates suggested for each problem.

1. Find the equation of motion of the single degree-of-freedom, spring-mass-damper system shown. It is driven by the force $F(t) = A \sin(\omega t)$ and the spring is unstretched when $x = 0$. Use x as the generalized coordinate. Neglect friction.

2. Find the equation of motion of the single degree-of-freedom inverted pendulum shown. The bar has mass $m = 80$ (kg) and length $\ell = 3$ (m). The bar is acted on by gravity and the horizontal spring of stiffness $k = 2$ (kN/m). The spring is unstretched when $\theta = 90$ (deg). Use θ as the generalized coordinate.

3. Find the equation of motion of the single degree-of-freedom system shown. The system consists of bar AB of mass m and length ℓ and a piston P of mass m_p. The system is driven by the force $F(t) = F_0 + A \sin(\omega t)$ and gravity. A spring and damper are attached to the massless slider at B. The spring is unstretched when $x = 0$. Use θ as the generalized coordinate. Neglect friction.

4. Find the equations of motion of the two degree-of-freedom spring-mass-damper system shown. It is driven by the force $F(t) = A \sin(\omega t)$ acting on mass m_1. The springs are unstretched when $x_1 = x_2 = 0$. Use x_1 and x_2 as the generalized coordinates. Neglect friction.

5. Find the equations of motion of the two degree-of-freedom system shown. The system consists of a mass m_1 that moves along a fixed horizontal bar and bar AB that is pinned to mass m_1 at A. Bar AB has mass m_2 and length ℓ. Mass m_1 is attached to the fixed support by a damper and a spring that is unstretched when $x = 0$. The system is driven by the force $F(t) = A \sin(\omega t)$ applied to m_1 and gravity. Use x and θ as the generalized coordinates. Neglect friction.