Simple Angular Velocity

The rigid body B shown in the diagram below rotates about the Z-axis. The XYZ reference frame is a fixed frame, while the xyz reference frame is fixed in (and rotates with) the body. The XYZ reference frame is represented by the unit vector set $R: (i, j, k)$, and the xyz reference frame is represented by the unit vector set $B: (e_1, e_2, k)$. Note that each unit vector set is a *right-handed* set, that is $i \times j = k$ and $e_1 \times e_2 = k$.

The unit vectors fixed in the body B can be differentiated by using the concept of *angular velocity*. It can be shown that

$$\frac{Rde_i}{dt} = R\omega_B \times e_i \quad (i = 1, 2)$$

where $\frac{Rde_i}{dt}$ represents the derivative of the unit vector e_i in the reference frame R, and $R\omega_B = \dot{\theta}k$ is the angular velocity of the body B in the reference frame R.

Aside:

$$\frac{Rde_1}{dt} = \frac{Rd}{dt} (C_\theta i + S_\theta j)$$

$$= \dot{\theta}(-S_\theta i + C_\theta j)$$

$$= \dot{\theta}e_2$$

$$= \dot{\theta}(k \times e_1)$$

$$= R\omega_B \times e_1$$
Differentiation of Unit Vectors – General Case

Consider now a rigid body \(B \) moving in three dimensional space. In general, given a set of unit vectors \((e_1, e_2, e_3) \) fixed in \(B \), it can be shown that

\[
\frac{d e_i}{dt} = \omega_B \times e_i \quad (i = 1, 2, 3)
\]

where, as before, \(\frac{d e_i}{dt} \) represents the derivative of the unit vector \(e_i \) in the reference frame \(R \), and \(\omega_B \) is the angular velocity of the body \(B \) in the reference frame \(R \). What we are presently lacking is a means of calculating \(\omega_B \), unless the body has simple angular motion.

Simple Angular Acceleration

The angular acceleration of \(B \) in \(R \) is found by differentiating the angular velocity vector. That is,

\[
\alpha_B = \frac{d}{dt} (\omega_B) = \ddot{\theta} k
\]
Kinematics of Fixed Axis Rotation

Consider the rigid body B shown in the diagram below. The fixed reference frame is represented by the unit vector set $R: (i, j, k)$, and the rotating reference frame is represented by the unit vector set $B: (\xi_1, \xi_2, \xi_3)$. All points of B travel in a circular path around the fixed axis. The **velocity** and **acceleration** of any point within the body can be determined by differentiating (with respect to time) its position vector r_{A} relative to any point on the fixed axis.

For example, the velocity of point A may be calculated as follows

$$v_{A} = \frac{R}{dt} (ae_{1} + be_{5}) = a \frac{R}{dt} e_{1} + b \frac{R}{dt} e_{5}$$

$$= a(R \omega_{B} \times e_{1}) + b(R \omega_{B} \times e_{5})$$

$$= R \omega_{B} \times (ae_{1} + be_{5})$$

$$= R \omega_{B} \times r_{A}$$

Performing the cross product in the last equation gives $v_{A} = a\dot{\theta}e_{2}$. Note that the velocity is **tangent** to the circular path. Similarly, the acceleration of A may be calculated as follows

$$\dot{a}_{A} = \frac{R}{dt} (\\dot{v}_{A}) = \frac{R}{dt} (R \omega_{B} \times r_{A})$$

$$= (R \alpha_{B} \times r_{A}) + (R \omega_{B} \times R v_{A})$$

Performing the operations in this last equation gives $\dot{a}_{A} = -a\dot{\theta}^{2}e_{1} + a\ddot{\theta}e_{2}$. Note the acceleration has both **normal** and **tangential** components.