Consider a rigid body B undergoing three dimensional motion as shown in the diagram below. R and S represent two reference frames that are rotating relative to each other. The angular velocity of the body B relative to the reference frame R ($^R\omega_B$) may be found by using the summation rule for angular velocities to work through the intermediate reference frame S as follows

\[
^R\omega_B = ^S\omega_B + ^R\omega_S
\]

Here, $^S\omega_B$ represent the angular velocity of B relative to the reference frame S, and $^R\omega_S$ represents the angular velocity of frame S relative to R.

Consider next the body B in the the diagram below. Here, there are three reference frames, R, S, and T, all rotating relative to each other. In this case, $^R\omega_B$ the angular velocity of B relative to R may be found using the summation rule for angular velocities to work through the intermediate frames S and T as follows

\[
^R\omega_B = ^T\omega_B + ^R\omega_T
= ^T\omega_B + ^S\omega_T + ^R\omega_S
\]

In fact, this rule may be extended to as many frames as necessary.

The summation rule may be used to compute the angular velocity of a body (undergoing three-dimensional motion) by introducing a set of reference frames whose relative angular motions may be described using simple angular velocities. Then, the angular velocity of the body is found by summing the simple angular velocities.

Note: There is no corresponding summation rule for angular accelerations. The angular acceleration of a body is found by direct differentiation of the angular velocity vector. That is, $^R\alpha_B = \frac{d}{dt}(^R\omega_B)$.