Connecting joints **constrain the relative motion** between adjoining bodies in a multibody system. Joints range from allowing no relative motion (totally rigid joint) to allowing all motions (free joint).

When degrees of freedom are removed, **constraint forces** or **torques** result. When degrees of freedom are not removed, forces or torques at a joint may or may not be zero. For example, bodies may be connected with springs and dampers that do not remove degrees of freedom, but do restrict the motion by applying loads associated with the relative motions.

A listing of **common connecting joints** is shown in the following table.

<table>
<thead>
<tr>
<th>Joint</th>
<th>Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid</td>
<td>0</td>
</tr>
<tr>
<td>Hinge (revolute)</td>
<td>1 (1 rotation)</td>
</tr>
<tr>
<td>Spherical (ball & socket)</td>
<td>3 (3 rotation)</td>
</tr>
<tr>
<td>Two-Angle (universal)</td>
<td>2 (2 rotation)</td>
</tr>
<tr>
<td>Prismatic (slider)</td>
<td>1 (1 translation)</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>2 (1 translation, 1 rotation)</td>
</tr>
<tr>
<td>Free</td>
<td>6 (3 translation, 3 rotation)</td>
</tr>
</tbody>
</table>

For every degree of freedom that a joint eliminates, a constraint equation must be written. The following paragraphs outline the form of the constraint equations for some of the common joints.

Spherical Joint: Absolute Coordinates

A **spherical** (or ball and socket) joint allows two bodies to share a common point, but to rotate freely relative to each other. If we use **absolute coordinates**, then the constraint equation can be written as

\[
\begin{align*}
\{ p_{G_2} \} &= \{ p_{G_1} \} + \begin{bmatrix} C_{B_1} \end{bmatrix} \{ q'_2 \} + \begin{bmatrix} C_{B_2} \end{bmatrix} \{ \tau'_2 \} \\
\{ p_{G_2} \} - \{ p_{G_1} \} - \begin{bmatrix} C_{B_1} \end{bmatrix} \{ q'_2 \} - \begin{bmatrix} C_{B_2} \end{bmatrix} \{ \tau'_2 \} &= \{ 0 \}
\end{align*}
\]

(1)
Eq. (1) represents a set of three scalar constraint equations that eliminate the three translational degrees of freedom between the bodies.

For incorporation into a set of equations of motion, the constraint equations may be differentiated twice so they are in the form of second order differential equations. Using inertial angular velocity components gives

\[
\begin{align*}
\{0\} &= \{v_{G_1}\} - \{v_{G_2}\} - [\dot{C}_{B_1}]\{q'_2\} - [\dot{C}_{B_2}]\{r'_2\} \\
&= \{v_{G_1}\} - \{v_{G_2}\} - [\tilde{\omega}_{B_1}]\{C_{B_1}\}\{q'_2\} - [\tilde{\omega}_{B_2}]\{C_{B_2}\}\{r'_2\} \\
&= \{v_{G_1}\} - \{v_{G_2}\} - [\tilde{\omega}_{B_1}]\{q'_2\} - [\tilde{\omega}_{B_2}]\{r_2\} \\
&= \{v_{G_1}\} - \{v_{G_2}\} + \{\tilde{q}_2\}\{\omega_{B_1}\} + \{\tilde{r}_2\}\{\omega_{B_2}\}
\end{align*}
\]

Differentiating again gives

\[
\begin{align*}
\{0\} &= \{a_{G_1}\} - \{a_{G_2}\} + \{\ddot{q}_2\}\{\omega_{B_1}\} + \{\ddot{r}_2\}\{\omega_{B_2}\} \\
&= \{a_{G_1}\} - \{a_{G_2}\} + [\dot{C}_{B_1}]\{\dot{q}'_2\} + [\dot{C}_{B_2}]\{\dot{r}'_2\} \\
&= \{a_{G_1}\} - \{a_{G_2}\} + [\dot{C}_{B_1}]\{\dot{q}'_2\} + [\dot{C}_{B_2}]\{\dot{r}'_2\}
\end{align*}
\]

Calculation of the elements of \([\hat{q}_2]\) and \([\hat{r}_2]\) were discussed in earlier notes.

Using body-fixed angular velocity components gives

\[
\begin{align*}
\{0\} &= \{v_{G_1}\} - \{v_{G_2}\} - [\dot{C}_{B_1}]\{q'_2\} - [\dot{C}_{B_2}]\{r'_2\} \\
&= \{v_{G_1}\} - \{v_{G_2}\} - [C_{B_1}]\{\tilde{\omega}_{B_1}'\}\{q'_2\} - [C_{B_2}]\{\tilde{\omega}_{B_2}'\}\{r'_2\} \\
&= \{v_{G_1}\} - \{v_{G_2}\} + [C_{B_1}]\{\tilde{q}'_2\}\{\omega_{B_1}'\} + [C_{B_2}]\{\tilde{r}'_2\}\{\omega_{B_2}'\}
\end{align*}
\]

Differentiating again gives

\[
\begin{align*}
\{0\} &= \{a_{G_1}\} - \{a_{G_2}\} + [C_{B_1}]\{\ddot{q}'_2\}\{\omega_{B_1}'\} + [C_{B_2}]\{\ddot{r}'_2\}\{\omega_{B_2}'\} \\
&= \{a_{G_1}\} - \{a_{G_2}\} + [C_{B_1}]\{\ddot{q}'_2\}\{\omega_{B_1}'\} + [C_{B_2}]\{\ddot{r}'_2\}\{\omega_{B_2}'\}
\end{align*}
\]

or

\[
\begin{align*}
\{0\} &= \{a_{G_1}\} - \{a_{G_2}\} + [C_{B_1}]\{\ddot{q}'_2\}\{\omega_{B_1}'\} + [C_{B_2}]\{\ddot{r}'_2\}\{\omega_{B_2}'\} \\
&= \{a_{G_1}\} - \{a_{G_2}\} + [C_{B_1}]\{\ddot{q}'_2\}\{\omega_{B_1}'\} + [C_{B_2}]\{\ddot{r}'_2\}\{\omega_{B_2}'\}
\end{align*}
\]
Spherical Joint: Relative Coordinates

- Consider now the use of *relative coordinates* to describe the positions of points within the multibody system as shown in the figure.

- To define a *spherical joint* that attaches the points Q_2 and O_2, the constraint equations are simply

$$\{\mathbf{s}'_2\} = \{\mathbf{s}'_2\} = \{\mathbf{s}_2''\} = \{0\}$$

(4)

Hinge (Revolute) Joint: Absolute Coordinates

- Like the spherical joint, the hinge joint connects two bodies at a single point, so the translational constraints are as given in Eq. (1).

- In addition, however, the hinge joint also restricts the *relative rotational motion* of the bodies by eliminating two of the three rotational degrees of freedom.

- Consider the two bodies shown in the diagram. Let \mathbf{h}_{B_i} be a vector fixed in B_i parallel to the hinge joint, and let \mathbf{f}_{B_i} and \mathbf{g}_{B_i} be vectors fixed in B_i that are perpendicular to the hinge axis (and, hence, \mathbf{h}_{B_i}). Then, the *rotational constraint* can be expressed directly in terms of the angular velocities as follows

$$\mathbf{f}_{B_i} \cdot \mathbf{R}_{B_i} \mathbf{w}_{B_2} = \mathbf{f}_{B_i} \cdot \mathbf{R}_{B_1} \mathbf{w}_{B_1} = 0 \quad \text{or} \quad \mathbf{f}_{B_2} \cdot \mathbf{R}_{B_2} \mathbf{w}_{B_2} = \mathbf{f}_{B_2} \cdot \mathbf{R}_{B_1} \mathbf{w}_{B_1} = 0 \quad (5)$$

$$\mathbf{g}_{B_i} \cdot \mathbf{R}_{B_i} \mathbf{w}_{B_2} = \mathbf{g}_{B_i} \cdot \mathbf{R}_{B_1} \mathbf{w}_{B_1} = 0 \quad \text{or} \quad \mathbf{g}_{B_2} \cdot \mathbf{R}_{B_2} \mathbf{w}_{B_2} = \mathbf{g}_{B_2} \cdot \mathbf{R}_{B_1} \mathbf{w}_{B_1} = 0 \quad (6)$$

- *Initial conditions* are used to ensure the alignment of \mathbf{h}_{B_i} with \mathbf{h}_{B_i}.

- Using *inertial angular velocity components* the first of Eqs. (5) and (6) may be written

$$0 = \{\mathbf{f}_{B_i}\}^T \left(\{\mathbf{w}_{B_1}\} - \{\mathbf{w}_{B_2}\}\right) = \left(\left[C_{B_i}\right] \{\mathbf{f}_{B_i}\}\right)^T \left(\{\mathbf{w}_{B_1}\} - \{\mathbf{w}_{B_2}\}\right)$$

$$= \{\mathbf{f}_{B_i}'\}^T \left[C_{B_i}\right]^T \left(\{\mathbf{w}_{B_2}\} - \{\mathbf{w}_{B_1}\}\right)$$
and
\[
0 = \{g_{B_i}\}^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right) \\
= \{g_{B_i}'\}^T \left[C_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]

- These equations can be differentiated to give
\[
0 = \left\{f'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{f'_{B_i}\right\}^T \left[\dot{C}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]
\[
= \left\{f'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{f'_{B_i}\right\}^T \left[\left[\hat{\omega}_{B_i}\right] \left[C_{B_i}\right] \right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]
\[
= \left\{f'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{f'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left[\hat{\omega}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]

and
\[
0 = \left\{g'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{g'_{B_i}\right\}^T \left[\dot{C}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]
\[
= \left\{g'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{g'_{B_i}\right\}^T \left[\left[\hat{\omega}_{B_i}\right] \left[C_{B_i}\right] \right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]
\[
= \left\{g'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{g'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left[\hat{\omega}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right)
\]

So, finally, the two differentiated constraint equations are
\[
0 = \left\{f'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{f'_{B_i}\right\}^T \left[\dot{C}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right) \tag{7}
\]
\[
0 = \left\{g'_{B_i}\right\}^T \left[C_{B_i}\right]^T \left(\{\dot{\omega}_{B_i}\} - \{\dot{\omega}_{B_i}\} \right) + \left\{g'_{B_i}\right\}^T \left[\dot{C}_{B_i}\right]^T \left(\{\omega_{B_i}\} - \{\omega_{B_i}\} \right) \tag{8}
\]

- Using body-fixed angular velocity components gives
\[
0 = \left\{f'_{B_i}\right\}^T \left(\left[C_{B_i/B_i}\right] \{\omega'_{B_i}\} - \{\omega'_{B_i}\} \right) = \left\{f'_{B_i}\right\}^T \left(\left[C_{B_i}\right]^T \left[C_{B_i}\right] \{\omega'_{B_i}\} - \{\omega'_{B_i}\} \right)
\]
\[
0 = \left\{g'_{B_i}\right\}^T \left(\left[C_{B_i/B_i}\right] \{\omega'_{B_i}\} - \{\omega'_{B_i}\} \right) = \left\{g'_{B_i}\right\}^T \left(\left[C_{B_i}\right]^T \left[C_{B_i}\right] \{\omega'_{B_i}\} - \{\omega'_{B_i}\} \right)
\]

- These equations can be differentiated to give
\[
0 = \left\{f'_{B_i}\right\}^T \left(\left[C_{B_i}\right]^T \left[C_{B_i}\right] \{\dot{\omega}'_{B_i}\} - \{\dot{\omega}'_{B_i}\} \right) \\
+ \left\{f'_{B_i}\right\}^T \left(\left[C_{B_i}\right]^T \left[C_{B_i}\right] \{\dot{\omega}'_{B_i}\} - \{\dot{\omega}'_{B_i}\} \right) - \left[\dot{\omega}'_{B_i}\right] \left[C_{B_i}\right]^T \left[C_{B_i}\right] \left\{\omega'_{B_i}\right\} \right) \tag{9}
\]
\[
0 = \left\{ g'_{B_i} \right\}^T \left(\left[C_{B_i} \right]^T \left[C_{B_j} \right]\{ \dot{\omega}'_{B_j} \} - \{ \dot{\omega}'_{B_i} \} \right) \\
+ \left\{ g'_{B_i} \right\}^T \left(\left[C_{B_i} \right]^T \left[C_{B_j} \right]\{ \ddot{\omega}'_{B_j} \} - \left[\ddot{\omega}'_{B_i} \right]\left[C_{B_i} \right]^T \left[C_{B_j} \right]\{ \dot{\omega}'_{B_j} \} \right) \{ \omega'_{B_j} \}
\]
\]

Hinge (Revolute) Joint: Relative Coordinates

- The translation constraints are the same as the spherical joint as given in Eq. (4).
- To derive the additional **rotational constraint equations**, we start with the same set-up used for absolute coordinates. That is, let \(h_{B_i} \) be a vector fixed in \(B_i \) parallel to the hinge joint, and let \(f_{B_i} \) and \(g_{B_i} \) be vectors fixed in \(B_i \) that are perpendicular to the hinge joint (and, hence, \(h_{B_i} \)). Then, the rotational constraint can be expressed directly in terms of the angular velocities as follows

\[
f_{B_i} \cdot \hat{B}_i \omega_{B_j} = f_{B_i} \cdot \hat{B}_j \omega_{B_j} = 0 \quad \text{or} \quad f_{B_j} \cdot \hat{B}_i \omega_{B_i} = f_{B_j} \cdot \hat{B}_j \omega_{B_i} = 0
\]

\[
g_{B_i} \cdot \hat{B}_i \omega_{B_j} = g_{B_i} \cdot \hat{B}_j \omega_{B_j} = 0 \quad \text{or} \quad g_{B_j} \cdot \hat{B}_i \omega_{B_i} = g_{B_j} \cdot \hat{B}_j \omega_{B_i} = 0
\]

As before, **initial conditions** are used to ensure the alignment of \(h_{B_j} \) with \(h_{B_i} \).

- Differentiating the above equations and using \(B_1 \) components of \(\hat{\omega}_{B_j} \) gives

\[
\left\{ f'_{B_i} \right\}^T \left\{ \hat{\omega}_{B_j} \right\} = 0
\]

\[
\left\{ g'_{B_i} \right\}^T \left\{ \hat{\omega}_{B_j} \right\} = 0
\]

- Differentiating the above equations and using \(B_2 \) components of \(\hat{\omega}_{B_j} \) gives

\[
\left\{ f'_{B_i} \right\}^T \left\{ \hat{\omega}'_{B_j} \right\} = 0
\]

\[
\left\{ g'_{B_i} \right\}^T \left\{ \hat{\omega}'_{B_j} \right\} = 0
\]