ME 6590 Multibody Dynamics
Homework #3

1. A two-body system is shown in each of the two figures. The orientations of the bodies are specified relative to the inertial frame \(R \) (absolute angles) using 3-2-1 body-fixed rotation sequences. The angles for \(B_1 \) and \(B_2 \) are \(\theta_{1i} \) and \(\theta_{2i} \) \((i = 1, 2, 3)\), respectively. The positions of the bodies are to be specified using relative coordinates. The position of body \(B_1 \) is given relative to \(R \) and the position of \(B_2 \) is given relative to body \(B_1 \) as shown in the lower figure. The vectors \(s_1 \) and \(s_2 \) represent translation vectors of the bodies. The position vectors \(r_1 \) and \(q_2 \) are fixed in \(B_1 \) and the position vector \(r_2 \) is fixed in \(B_2 \).

Find \(\left\{ a_{G_2} \right\} \) the inertial components of the acceleration of \(G_2 \) the mass-center of \(B_2 \). Express the results in matrix-vector form using body-fixed angular velocity components. As in Homework #2, use the components of \(\left\{ s_1 \right\}, \left\{ s_2' \right\}, \left\{ \dot{\theta}_{B_1} \right\}, \) and \(\left\{ \dot{\theta}_{B_2} \right\} \) as the generalized speeds.

2. Given the same set-up as above, find \(\left\{ a_{G_3} \right\} \) the inertial components of the acceleration of \(G_3 \) the mass-center of body 3 of the multibody system shown. Express the results in matrix-vector form using the body-fixed angular velocity components. As in Homework #2.1, use the components of \(\left\{ s_1 \right\}, \left\{ s_2' \right\}, \left\{ s_3' \right\}, \left\{ \dot{\theta}_{B_1} \right\}, \left\{ \dot{\theta}_{B_2} \right\}, \) and \(\left\{ \dot{\theta}_{B_3} \right\} \) as the generalized speeds.