Objectives

• Describe the two major kinds of rock weathering.
• Identify three end products of weathering.
• Describe soil horizons.
• Explain the difference between weathering, erosion, and mass wasting.
• Describe how ice, water, and air transport regolith across Earth's surface.
• Define and give examples of mass wasting by slope failure and/or sediment flow.

Weathering-The First Step in the Rock Cycle
Weathering—The First Step in the Rock Cycle

- How rocks disintegrate
 - Weathering
 - The chemical and physical breakdown of rock exposed to air, moisture and living organisms
 - Regolith
 - A loose layer of fragments that covers much of Earth’s surface
 - Soil
 - The uppermost layer of regolith, which can support rooted plants

- Mechanical weathering
 - The breakdown of rock into solid fragments by physical processes
 - Chemical composition of rock NOT altered

- Chemical weathering
 - The decomposition of rocks and minerals by chemical and biochemical reactions

Processes:
- Pressure release
- Frost action
- Plants and animals
- Abrasion

- Joints
 - A fracture of rock, along which no appreciable movement has occurred
 - Sheet jointing or exfoliation
 - Frost wedging

- Abrasion
 - The gradual wearing down of bedrock by the constant battering of loose particles transported by wind, water or ice
Weathering-the First Step in the Rock Cycle

Joshua Tree National Monument

- Landscape that formed in two stages; deep weathering of granitic rocks along joints (humid climate) with spheroidal weathering; followed by climate change to arid climate; exposure of core stones

Sheeting or exfoliation: Weathering of thin slabs of rock from an outcrop
Pressure release

- Expansion of rock as pressure is removed by erosion—as rock expands, fractures formed perpendicular to direction of pressure release
- Known as sheeting or exfoliation

Frost wedging: water expands by 9% in volume as it freezes: Causes breaking of rock along existing or new joints

Andesite slabs and fragments produced by frost shattering-southwestern Montana
Canadian Rockies

BIOLOGICAL ACTIVITY - ROOT WEDGING

Abrasion: once a depression is formed on the rock surface, it is deepened by winds blowing sand across the surface
Chemical weathering

- Dissolution
 - The separation of materials into ions in a solution by a solvent, such as water or acid
 - Rainwater acts as weak solution of carbonic acid
 - Anthropogenic actions influence acidity of rainwater

Chemical Weathering

[Image of Obelisk in Egypt and Obelisk in New York]

Chemical weathering
Factors affecting weathering

- Tectonic setting
 - Young, rising mountains weather quicker
 - Mechanical weathering most common

Factors affecting weathering

- Rock composition
 - Minerals weather at different rates
 - Calcite weathers quickly through dissolution
 - Quartz is very resistant to chemical and mechanical weathering

Factors affecting weathering

- Rock structure
 - Distribution of joints influence rate of weathering
 - Relatively close joints weather faster
Factors affecting weathering

• Topography
 – Weathering occurs faster on steeper slopes
 • Rockslides

Factors affecting weathering

• Vegetation
 – Contribute to mechanical and chemical weathering
 – Promotes weathering due to increased water retention
 – Vegetation removal increases soil loss

Factors affecting weathering

• Biologic activity
 – Presence of bacteria can increase breakdown of rock
Factors affecting weathering

- Climate
 - Chemical weathering more prevalent in warm, wet tropical climates
 - Mechanical weathering less important
 - Mechanical weathering more prevalent in cold, dry regions
 - Chemical weathering occurs slowly

Products of Weathering

- Clay
 - Tiny mineral particles of any kind that have physical properties like those of the clay minerals
 - A family of hydrous alumino-silicate minerals
Products of Weathering

- **Sand**
 - A sediment made of relatively coarse mineral grains

- **Soil**
 - Mixture of minerals with different grain sizes, along with some materials of biologic origin

- **Humus**
 - Partially decayed organic matter in soil

Soil horizons

- One of a succession of zones or layers within a soil profile
- Each horizon has a distinct physical, chemical, and biologic characteristic

Soil profiles

- The sequence of soil horizons from the surface down to the underlying bedrock
Soils and climate

Prairie soil: South Dakota

Soils and climate

Forest soil: Michigan

Erosion by water

- Erosion
 - The wearing away of bedrock and transport of loosened particles by a fluid, such as water
- Bed Load
 - Sediment moved along the bottom of a stream
- Saltation
 - Bouncing movement along bed of stream
- Suspended load
 - Silt and clay that move in suspension
- Dissolved load
 - Molecules that are dissolved in the water
Erosion by water

- Saltation is primary mechanism
- Bed load (contains sand, pebbles, boulders)

Erosion and Mass Wasting

- Erosion by wind
 - Saltation is primary mechanism

- Erosion by ice
 - Glacier
 - A semi-permanent or perenially frozen body of ice, consisting of recrystallized snow, that moves under the pull of gravity
White Desert, Egypt

Erosion by glaciers
Erosion by glaciers

Mass Wasting

- Mass wasting
 - The downslope movement of regolith and/or bedrock masses due to the pull of gravity
- Slope failure
 - Falling, slumping or sliding of relatively coherent masses of rock
 - Three basic types
 - Fall: vertical (or near vertical) drop of rock fragments
 - Slide: rapid displacement of rock/ regolith down steep or slippery slope
 - Slump: rotational movement of material

Mass Wasting

Rock slide

Rock fall
Slump

Direction of motion

Slides

Great Lakes coastal slumps/slides
Mass Wasting

- Flow
 - Any mass-wasting process that involves a flowing motion of regolith containing water and/or air within its pores
 - Sharry flows
 - Granular flow

- Creep
 - The imperceptibly slow downslope granular flow of regolith

Erosion and Mass Wasting

- Slurry flows
- Granular flows

Dec., 2004 Debris flow
Madison Canyon slide, 1959

Flowed uphill on opposite side of valley; buried campground with 26 people; formed temporary lake; Corps of Engineers excavated spillway to prevent catastrophic overtopping and flood.

Frank Slide, Alberta

Reproduced with the permission of the Minister of Public Works and Government Services Canada, 2002 and Courtesy of Natural Resources Canada, Geological Survey of Canada, photo # 127435

VISUALIZING

Safety Factor and Landslide Prediction

- Factor of safety (FS)
 - The balance between destabilizing forces (shear stress) and stabilizing forces (shear strength)

- Tectonics and mass wasting
 - World’s major historic landslides clustered near converging lithospheric plates
 - High mountains
 - Earthquake