BIOS 6150: Ecology
Dr. Stephen Malcolm, Department of Biological Sciences

• Week 12: Manipulating Abundance & Risk Assessment.

• Lecture summary:
 • Manipulating abundance - pests and harvesting:
 • Ecological risk assessment:
 • Assessing the risks of invasion and persistence of genetically engineered crops.
 • Crawley et al. (1993).
2. Reasons for manipulating abundance:

- **Pest and weed control:**
 - Economic injury level (EIL):
 - Figs. 15.1a & 16.2.
 - Economic action threshold:
 - Using chemical, biological & integrated methods

- **Harvesting, fishing, shooting and culling:**
 - Sustainable yields of harvested resources:
 - Table 16.6.
 - Maximum sustainable yield (MSY):
 - Fig. 15.7.
3. **MSY models of harvesting:**

- **Surplus yield models:**
 - Based on an n-shaped recruitment curve:
 - Fig. 5.8.
 - Product of logistic population limitation to a carrying capacity \(K \):
 - Fig. 16.12 (3rd ed.).
 - *Fixed-quota* harvesting.
 - *Fixed-effort* harvesting.
4. **Fixed-quota harvesting** (Fig. 15.7):

- Fragile equilibrium at MSY \((N_m \text{ at } h_m)\).
- 1 unstable equilibrium and 1 stable equilibrium at a lower *fixed-quota* harvest \((h_l)\).
5. **Fixed-effort** harvesting (Fig. 15.9):

- Safer than *fixed-quota* harvest. Stable equilibria:
 - \(H = qEN \)

 - where \(H \) = yield, \(N \) = harvested population size, \(E \) = harvesting effort, \(q \) = harvesting efficiency.
6. **Fixed-effort harvesting:**

- Multiple equilibria:
 - Variable recruitment leading to unstable equilibria Fig. 15.11
7. MSY models of harvesting:

• **Dynamic pool** models of harvesting:
 • **Surplus yield** models ignore population structure.
 • This is important because recruitment includes:
 • Adult survival & fecundity, juvenile growth & survival.
 • Harvesting usually most interested in mature age class.
 • Dynamic pool models *(Fig. 15.13)* estimate exploitable biomass and include:
 • 1. Recruitment rate
 • 2. Growth rate
 • 3. Natural mortality rate
 • 4. Fishing rate of exploited stock
8. Ecological Risk Assessment for the Use of Transgenic Plants:

- Three scales of perceived risk (unintended effects):

 1. **Gene**:
 - Potential for transfer of inserted DNA and consequences of expression in novel, hybrid or wild species.

 2. **Gene products**:
 - Adverse effects on non-target organisms.

 3. **Transgenic organism**:
 - Life history changes that can influence natural or managed habitats.
9. What are the primary risks?

- Invasion and Persistence into non-target locations:
 - These can include:
 - Non-target habitats.
 - Non-target crops.
 - Can pose a variety of problems:
 - Human health.
 - Conservation.
 - Biodiversity.
10. What are the processes by which plants invade and persist in non-target locations?

- These include:
 - Gene flow:
 - Primarily via pollen.
 - Resistance to natural enemy attack:
 - Predators.
 - Parasites.
 - Pathogens.
 - Superior competitors:
 - Intraspecific.
 - Interspecific.
11. Development of a risk assessment protocol for routine use:

- How do we assess invasion and persistence?
12. Demography of invasions:

• 3 phases:
 • 1. Colonization (Invasion):
 • Assumed to occur given routine agricultural use of large numbers of seeds.
 • 2. Establishment (Persistence):
 • Main focus!
 • 3. Spread (Hybridization):
 • Can be assessed from life history measurement.
13. Establishment:

- Three basic measures of population growth can be used in the absence of density-dependent constraints, these are:
 - 1. *Basic or net reproductive rate*, R_0
 - 2. *Finite rate of increase*, λ
 - 3. *Intrinsic rate of natural increase*, r
14. Finite rate of increase, λ, for the oilseed rape (canola) experiments:

- $\lambda_1 = (1 - d_1 - g) + g(1 - d_2)F$
 - λ_1 = proportion surviving + seeds produced by survivors.
 - where,
 - d_1 = proportion of seeds that die in one year
 - g = proportion of seeds germinating in the first spring
 - d_2 = proportion of seeds that die over winter
 - F = mean number of seeds produced per seed that germinates
 - A seed burial experiment estimated d_1 and seed sowing experiments estimated germination, plant survival and fecundity.
15. The oil seed rape (canola) example:

- From frequency distribution data:
 - Number of seeds produced per germinated seed (F) was 17.6 at one habitat in Berkshire.
 - Probability of seed germination (g) was 0.026.
 - Seed bank mortality was unknown.
- If all die in seed bank then finite rate of increase is:
 - $\lambda = gF = 0.026 \times 17.6 = 0.458$
 - Or, if the seed bank is completely viable then:
 - $\lambda = (1 - g) + gF = 0.974 + 0.026 \times 17.6 = 1.43$
- Because some seeds will die, λ will lie between these extremes. Therefore data for the complete life cycle are needed to assess invasibility and persistence.
16. Results of Crawley et al. (1993):

- In the absence of interspecific competition, \(\lambda \) was very high:
 - 19.1, 15.7 and 11.5 for control, kanamycin- and glufosinate-tolerant genotypes.

- But \(\lambda \) was always <1 in the presence of competitors
 - Fig. 1.
Figure 15.1a: Population fluctuations and levels of equilibrium abundance and economic injury (EIL).
Figure 16.2 (3rd ed.): Economic injury level (EIL) defined as largest difference between crop value and cost of pest control with increasing pest density.
Table 16.6 (3rd ed.): Effects of harvesting on life history performance in blowflies.

Table 16.6 Effects produced in populations of the blowfly *Lucilia cuprina* by the destruction of different constant percentages of emerging adults. (After Nicholson, 1954b.)

<table>
<thead>
<tr>
<th>Exploitation rate of emerging adults (%)</th>
<th>Pupae produced per day (a)</th>
<th>Adults emerged per day (b)</th>
<th>Mean adult population (c)</th>
<th>Mean birth rate (per individual per day) (a / c)</th>
<th>Natural adult deaths per day (d)</th>
<th>Adults destroyed per day (e - b - d)</th>
<th>Accessions of adults per day (e / c)</th>
<th>Mean adult life span (days) (c / e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>624</td>
<td>573</td>
<td>2520</td>
<td>0.25</td>
<td>573</td>
<td>0</td>
<td>573</td>
<td>4.4</td>
</tr>
<tr>
<td>50</td>
<td>782</td>
<td>712</td>
<td>2335</td>
<td>0.33</td>
<td>356</td>
<td>356</td>
<td>356</td>
<td>6.6</td>
</tr>
<tr>
<td>75</td>
<td>948</td>
<td>878</td>
<td>1588</td>
<td>0.60</td>
<td>220</td>
<td>658</td>
<td>229</td>
<td>7.2</td>
</tr>
<tr>
<td>90</td>
<td>1361</td>
<td>1260</td>
<td>878</td>
<td>1.55</td>
<td>125</td>
<td>1134</td>
<td>126</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Figure 15.7: Maximum sustainable yield (MSY) at N_m and equilibria generated by different fixed quota harvesting levels.

$u =$ unstable, $s =$ stable
Figure 5.8: Density-dependent effects on births and deaths and \(n \)-shaped recruitment.
Figure 16.12 (3rd ed.): Logistic population growth and highest harvest frequency at intermediate density with highest growth rate (c).
Figure 15.13: Dynamic pool flow model: