The following questions are arranged in an order that follows the corresponding passages in the assigned reading closely. As you work through Popper’s piece, you should be able to answer these one after another, briefly and clearly. You should bring your typewritten (printed) answers with you to class on Thursday, September 06, 2012, ready to be turned in, with this page stapled to the front of your answers.

1. In the first few paragraphs of the reading, Popper states concisely what the philosophical problem is that he is most interested in investigating. What is Popper’s statement of this problem?

2. What, according to Popper, is the most widely accepted answer to this problem at the time he is writing?

3. What does Popper think is wrong with this widely accepted answer? What example(s) does he give showing this?

4. What do Marx’s, Freud’s, and Adler’s theories have in common with primitive myths and astrology, according to Popper?

5. Does Popper think that it is a good thing or a bad thing for a theory to be able to explain everything? Why does he say this?

6. Popper says that the impressive thing about Einstein’s hypothesis, particularly in the context of Eddington’s expedition, is the “risk” it took. What does he mean by this expression?

7. Popper summarizes seven main conclusions that he arrived at “in the winter of 1919-20” on pp. 473-474. Do your best to understand what he means by each of these, and then try to restate each conclusion in your own words. Are all of these conclusions different from one another?

8. Popper gives two clear statements of his solution to the Demarcation Problem in this selection. Find both statements, and compare them.

9. What are some ways in which defenders of a theory typically avoid the implications of falsifying evidence? What do these moves inevitably do to the status of such theories, according to Popper?

10. What does Popper think of Freud’s theory of the Ego, the Super-ego, and the Id, and why exactly does he conclude this? What role does he think this theory (and others like it) may have (and historically have had)? And what would have to change about this theory in order for it to become more scientific?

Einstein’s theory predicts that the path of light will be noticeably influenced by the gravitational pull of extremely massive bodies like the sun. If he is right, the gravitational pull of the sun should be sufficiently strong to cause nearby light radiating from distant stars to “turn” in direction. The result is that the stars radiating this light appear to us to be in different places depending on whether or not the sun (or some other sufficiently massive body) sits in between us and those stars. To confirm this prediction of Einstein’s theory, Eddington took photographs of the stars visually surrounding the sun during a solar eclipse and compared their positions to those observed in a photograph of the same stars in the night sky—that is, without the sun between us and the stars. The photographs disclosed a
noticeable shift in the positions of the stars, and this shift was as predicted by Einstein; thus, Einstein’s theory was confirmed where it might have been falsified. The graphic below, taken from The Illustrated London News (November 22, 1919) gives a visual explanation of Eddington’s evidence.