NAME: __

INSTRUCTIONS:

1. THIS EXAM IS CLOSED BOOK AND CLOSED NOTES.

2. NO ELECTRONIC DEVICES ARE ALLOWED.
 All electronic devices, including watches, must be stowed away.

3. You may only use the provided pencil.
 All other writing instruments and erasers must be stowed away.

4. No hats or hoods may be worn during the exam.

5. Work each problem in the provided space.

6. Show ALL work required to arrive at a solution for either full or partial credit.

7. READ the entire question before answering.

8. Have your student ID on your desktop for inspection by the instructor.

9. SIGN the honesty pledge at the bottom of the page. Exams without a signature will receive no credit.

I have neither given nor received assistance from anyone in regards to completion of this exam. I have followed the instructions as provided on this sheet. I HAVE VERIFIED THAT THIS EXAM HAS (7) PAGES.

SIGNATURE: _________________________________ DATE: ___________

Note: some problems might be adapted from the course text or other sources. Schematics prepared using LTspice® (linear.com). © 2020 Damon A. Miller.
Maximum exam score is 30 points.

1. (1 point) Positive current always flows from higher to lower electric potential.

 Circle ONE: **TRUE FALSE**

2. (2 points) Provide the **COMPLETE** definition of electric power as discussed in class.

3. (2 points) Consider the system

 \[y = T[x] = x + 1 \]

 where \(x \) is the system input and \(y \) is the system output. Is this system linear? **Justify your response.** Answers without justification will not earn credit.
4. (5 points) A meter movement has a series resistance of 10Ω and a full-scale current of 1mA. Use this meter movement to design a 10V full-scale voltmeter. Be sure to show a schematic of your design.
5. (5 points) Find node voltages v_1 and v_2 using nodal analysis. Use of other methods will result in zero credit.
6. (5 points) Find current I_2 using the superposition principle. Use of other methods will result in zero credit.
7. (5 points) Thevenize the following circuit “looking into” terminals A-B. Be sure to sketch the Thevenin equivalent circuit.
8. (5 points) Find the power of each circuit element. You **must** show the voltage across (with polarity) and current through (with direction) each element. Put answers in table.

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>I₁</td>
<td></td>
</tr>
<tr>
<td>I₂</td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td></td>
</tr>
<tr>
<td>V₁</td>
<td></td>
</tr>
<tr>
<td>V₂</td>
<td></td>
</tr>
</tbody>
</table>