ECE 4810 Spring 2010 Circuit Analysis Review Sheet

 \sim /wmu/courses/ece320/ReviewSheet

©2008 Damon A. Miller

Topics

- 1. Complex Numbers
- 2. Bode plots
- 3. Ohm's Law
- 4. Kirchoff's Laws
- 5. Laplace Transformation
- 6. Transfer Functions
- 7. Thevenin's and Norton's Theorems
- 8. Input and Output Resistance and Voltage Gains of Resistive Networks

REVIEW PROBLEMS

See last page for figures.

- 1. Perform the following operations:
 - (a) express 1 3j in polar form
 - (b) express -1 + 3j in polar form
 - (c) express $2\angle 30^{\circ}$ in rectangular form
 - (d) find the magnitude of 1 + j
- 2. Plot the magnitude of

$$T(s) = \frac{1}{s+1} \tag{1}$$

in dB (e.g. $20 \log(|T(j\omega)|)$ where $s = j\omega$. Use a log scale on the frequency axis. Also plot the angle of the complex number $T(j\omega)$ vs. ω , also using a log scale on the frequency axis. For both plots, provide a table of sample points; include computations used to obtain these points.

- 3. Find I.
- 4. Setup the equations needed to solve for I_1 , I_2 , and I_3 .
- 5. Setup the integrodifferential equations needed to solve for v_1 and v_2 . Assume zero initial conditions in L and C.

- 6. The venize the circuit "looking into" nodes A-A'. Find the input resistance "seen" by V, the circuit output resistance ("looking into" nodes A-A'), and the voltage gain $V_{AA'}/V$.
- 7. The venize the circuit "looking into" nodes A-A'. Find the input resistance "seen" by V, the circuit output resistance ("looking into" nodes A-A'), and the voltage gain $V_{AA'}/V$.
- 8. Nortonize the circuit "looking into" nodes A-A'.
- 9. Find the transfer function $T(s) = V_o(s)/V_i(s)$.
- 10. Find $v_o(t)$ for the circuit of question 9 if $v_i(t)$ is a step function of height A volts. Assume the capacitor is initially uncharged.
- 11. What two effects can a linear circuit have on an input sinusoid in the steady state?

