Progress and End of Course Checks

Is the End of Course Check just another flight, or is it some “rite of passage” to go see a pilot examiner? With the attitude of some students on recent checks, you would think that they are expecting a “cake ride” just to get a tick mark in the box and complete the flight. Part of the problem is with the expectations of the flight; some students know what to expect while others do not.

On a recent 36 EoC, a student was surprised to find out that we were going to begin the flight by flying cross-country to Lima, OH (with a diversion of course). His expectation was to takeoff, fly some maneuvers and a couple of landings. When this student showed up for the first attempt, there was no flight planning, performance or W&B calculations. How are you preparing your students for the EoC Check? Is anyone actually opening a PTS and understanding the test? Are students relying on some book called “Guide to the Oral Exam”?

Here are a few tips that you can do to prepare your student for the EoC Check. It all starts with the PTS. Step one: Open it up and read it from the beginning. Understand the special emphasis areas, how the examiner will conduct the test and what happens if something does go wrong. Did you know that there are valid reasons to discontinue a test and it will not count against the student?

Step two: read the Areas of Operation. If you look in the Area of Operation for weather, one item will likely be Convective Outlook Chart. When was the last time that you looked at this chart and actually used it? On the last dozen checks, half did not know where the thunderstorms would occur, let alone which areas would have a chance of severe storms.

Step three: if you do not understand something, then either look it up in your text book or ask someone more knowledgeable than you.

Step four: practice answering questions. On my checks, I tend to be very practical with how you will use your knowledge. For example, if given a TAF and METAR, tell me if the weather is VFR or IFR for the planned flight time. The knowledge needed for this is as follows: UTC conversion, METAR/TAF understanding, VFR/IFR criteria (vis and ceilings). One recent student needed 15 minutes and a book (plus a hint from me) to tell me that the weather is currently MVFR and forecast to be VFR for the scheduled flight time. I could have asked the student what is the criteria for VFR, but that is not how we use our knowledge in the real world.

Make sure that your students have knowledge, then ask them questions to apply that knowledge. Here is another example: The visibility just dropped to 2sm, can you land VFR at this airport that has a magenta dashed circle around it? Chart reading, airspace, VFR weather minimums, and special VFR are being tested here.

Take your students to the next level of flying, it is called the real world.
THE BACK SIDE

Plogs

Is the student going to make it to the planned destination? The student was asked to plan a flight from KBTL to Rantoul, IL (KTIP). The TC is 227 degrees and on the day of the flight, +5 degrees of wind correction was needed. Variation is 5 degrees. The Plog showed a compass heading of 337 degrees. What would happen in real life if this student just got into the airplane and flew this route with the planned compass heading of 337 degrees? I would hope that the student would figure out the mistake before becoming airborne, or at the very least after turning to 337 degrees.

But the real question here is why did the student make the mistake? We all rely on calculators to quickly and accurately calculate numbers. If we put the right numbers in and press the right buttons, then we get the right answer. What happens if we enter a wrong number or press a wrong button? Will the calculator tell you that your answer is wrong? The problem is not the calculator, but the operator. Only the person entering the numbers can ascertain whether the answer is correct. That is where this student went wrong; does the answer make sense?

In this case, the student did not use a calculator. That should not matter because the student should always ask themselves if the answer to any calculation makes sense. This student made a simple mistake; let’s examine what happened. The culprit is the double number ‘2’. In order to add 10 to 227, you know that the last digit remains the same (zero added to anything will not change anything). Now the ‘1’ is in the tens place, so 2 + 1 = 3. Simply change the 2 to a three and your in business. But as I said above, the double ‘2’ is the problem. The student was in a rush, so both ‘2’s’ were changed to ‘3’s’.

Stop right here and ask yourself what direction are we going. You want to go Southwest, but what is 337 degrees? This is a simple error check. In general, students do not think about directions (N, S, E, W) but instead think about numbers. Correlate the number to a direction and you double-check yourself every time.

Always ask yourself if a calculation makes sense. We are all human and all of us are capable of making mistakes. It does not matter how experienced you are, always double-check yourself.

Quiz Time

Here is a good question for all pilots as we get into the thunderstorm season. In general, you can categorize thunderstorms into which two groups?

THUNDERSTORM SEASON

How can you tell the difference between the two groups?

See Dominic for the answers.