9–122. The loading acting on a square plate is represented by a parabolic pressure distribution. Determine the magnitude of the resultant force and the coordinates (\(\bar{x}, \bar{y} \)) of the point where the line of action of the force intersects the plate. Also, what are the reactions at the rollers B and C and the ball-and-socket joint A? Neglect the weight of the plate.

![Diagram of a plate with pressure distribution](image)

9–109. The concrete "gravity" dam is held in place by its own weight. If the density of concrete is \(\rho_c = 2.5 \text{ Mg/m}^3 \), and water has a density of \(\rho_w = 1.0 \text{ Mg/m}^3 \), determine the smallest dimension \(d \) that will prevent the dam from overturning about its end A. The resultant force exerted by the water on the dam acts in the horizontal direction, is applied at 2/3 of the surface and has a magnitude of \(F = \rho_w gH \).

![Diagram of a dam](image)

9–119. The load over the plate varies linearly along the sides of the plate such that \(p = 10[y(2 - x)] \text{ lb/ft}^2 \). Determine the magnitude of the resultant force and the coordinates (\(\bar{x}, \bar{y} \)) of the point where the line of action of the force intersects the plate.

![Diagram of a plate with varying load](image)