The Wiener Polynomial of a Graph

The Wiener index is a graphical invariant that has found extensive application in chemistry. We define a generating function, which we call the Wiener polynomial, whose derivative is a q-analog of the Wiener index. We study some of the elementary properties of this polynomial and compute it for some common graphs. We then find a formula for the Wiener polynomial of a dendrimer, a certain highly regular tree of interest to chemists, and show that it is unimodal. Finally, we point out a connection with the Poincare polynomial of a finite Coxeter group.