1. Find a solution of the next initial value problem

\[\frac{dy}{dx} = e^{3y} \sin 3x, \quad y(0) = 0. \]

Is this solution unique? Does it exist for all \(x \)? Explain.

2. A cup has been filled with coffee with initial temperature 210° F at 7:00 a.m. The coffee’s temperature was 180° F at 7:15 a.m. Room temperature is 70° F. Find the coffee’s temperature at 7:20 a.m.? (Hint: use Newton’s cooling law.)
3. Find a solution of the next initial value problem

\[x^2 y' - 2xy = x^3, \quad y(1) = 0. \]

4. Find a general solution of the following differential equation

\[(y \cos xy + e^{-x})dx + (x \cos xy + \frac{1}{1 + 2y})dy = 0. \]
5. Consider a differential equation

\[\frac{dx}{dt} = x^2 - 4x + 3 \]

(a) Construct a sketch showing the nature of the solutions \(x(t) \). Find all equilibrium solutions. Determine stability or instability of each equilibrium solution.

(b) Find the solution satisfying the initial condition \(x(0) = 4 \).