An Essay on Equivalence of Linear Codes

Jay A. Wood
jay.wood@wmich.edu
http://homepages.wmich.edu/~jwood

AMS Special Session
Boulder
October 4, 2003
Outline

Definition(s) of linear codes

Equivalence of linear codes: When should two linear codes be considered to be the same?

- **Extrinsic**: permute columns, scale entries in a column.

- **Intrinsic**: linear isomorphism that preserves weight.

MacWilliams, 1961: these are the same, for Hamming weight over fields.

Generalizations of the MacWilliams extension theorem
Matrix treatment

Definition 1 A linear code C over a field F is a k-dimensional subspace of the n-dimensional vector space F^n.

A linear code can be presented by a generator matrix G of size $k \times n$. The rows of G form a basis for the linear code.

Allowing for a different basis leads to a left action of $GL(k, F)$.

Allowing for equivalence (scaling and permutations) leads to a right action of $\text{Monom}(n, F^\times)$, the group of $n \times n$ monomial matrices with non-zero entries from F^\times.
MacWilliams Extension Theorem

Work over a finite field F, using Hamming weight.

Theorem (MacWilliams, 1961) Two linear codes C_1, C_2 in F^n are equivalent if and only if there exists a linear isomorphism from C_1 to C_2 that preserves Hamming weight.

This result links the extrinsic and intrinsic notions of equivalence. It is a coding theory counterpart of theorems of Witt, 1937, and Arf, 1941, for bilinear and quadratic forms.

I’ll sketch some proofs later.
Functional treatment

Definition 2 A linear code C over a field F is a k-dimensional vector space M together with a linear embedding $M \rightarrow F^n$.

By composing with the various coordinate projections $F^n \rightarrow F$, the linear embedding is given by n linear functionals $\lambda_1, \ldots, \lambda_n : M \rightarrow F$.

One can pre-compose with an element of

$$\text{Aut}(M) \cong GL(k, F),$$

and post-compose with an element of

$$\text{Monom}(n, F^\times).$$

The functional viewpoint was introduced by Assmus and Mattson, 1963.
Coordinate-free approach

In fact, Assmus and Mattson advocated a coordinate-free approach, using linear functionals. Namely,

Definition 3 A linear code C over a field F is a k-dimensional vector space M together with a multiset S of linear functionals on M.

By not ordering the linear functionals, one can avoid the use of permutations in describing equivalence.
Multiplicity function approach

Let $M^\#$ denote the space of all linear functionals on a vector space M. Then F^\times acts on $M^\# \setminus \{0\}$. The orbits form a projective space, which I will choose to denote by $O^\#$.

Definition 4 A linear code C over a field F is a k-dimensional vector space M together with a multiplicity function $\eta : O^\# \to \mathbb{N}$.

The monomial (scaling and permutation) aspects of equivalence are encapsulated in the multiplicity function η. There is still the action of $\text{Aut}(M)$.
Weights

Let \(w : F \rightarrow \mathbb{N} \) be a weight function, with \(w(0) = 0 \). The Hamming weight is one example.

Given a linear code \(C = (M, \eta) \), the weight of a vector \(x \in M \) is given by

\[
 w_\eta(x) = \sum_{\lambda \in \mathcal{O}_\eta} \eta(\lambda) w(\lambda(x)).
\]

For Hamming weight, this sum does not depend on the representative \(\lambda \). In addition,

\[
 w_\eta(x) = w_\eta(ax)
\]

for any non-zero \(a \in F^\times \).
MacWilliams extension theorem, again

We work with Hamming weight over a field F.

Theorem *Given two linear codes* $C_1 = (M, \eta_1)$, $C_2 = (M, \eta_2)$ *with the same underlying space* M, *then* $\eta_1 = \eta_2$ *if and only if* $w_{\eta_1} = w_{\eta_2}$.

Let \mathcal{O} denote the projective space obtained from the action of F^\times on $M \setminus \{0\}$, and let $\mathbb{N}[\mathcal{O}]$, resp. $\mathbb{N}[\mathcal{O}^\#]$, be the spaces of functions $\mathcal{O} \to \mathbb{N}$, resp. $\mathcal{O}^\# \to \mathbb{N}$, then the forming of weights gives a well-defined map

$$T : \mathbb{N}[\mathcal{O}^\#] \to \mathbb{N}[\mathcal{O}], \quad \eta \mapsto w_\eta.$$

The extension theorem says that T is injective.
Sketch of proof

Let \(\chi : F \to \mathbb{C}^\times \) be a non-trivial character of the additive group of \(F \). Then every other character of \(F \) has the form \(\pi(a) = \chi(ba) \), for some \(b \in F \).

For the Hamming weight \(w \), note that

\[
w(a) = 1 - \frac{1}{|F|} \sum_{b \in F} \chi(ba),
\]

is the expansion of \(w \) as a linear combination of characters on \(F \).
Sketch, continued

Then, on M,

$$w_\eta(x) = \sum_{\lambda \in \mathcal{O}^\#} \eta(\lambda) w(\lambda(x))$$

$$= \sum_{\lambda \in \mathcal{O}^\#} \eta(\lambda) - \frac{1}{|F|} \sum_{\lambda \in \mathcal{O}^\#} \sum_{b \in F} \eta(\lambda) \chi(b\lambda(x))$$

is the expansion of w_η as a linear combination of characters on M. Now, match up coefficients. (Ward, Wood, 1996)

Codes over rings

Given a finite ring R with a weight function $w : R \to \mathbb{N}$, let

$$ G = \{ u \in \mathcal{U}(R) : w(ur) = w(ru) = w(r), r \in R \} $$

be the symmetry group of the weight function w. $\mathcal{U}(R)$ is the group of units in R.

By taking M to be an R-module, and letting G play the role played by F^\times in forming \mathcal{O} and $\mathcal{O}^\#$, the whole apparatus carries over.

One major problem is to determine for which rings R and weight functions w the weight map T is injective.