Example System: Simple Speed Control System

Consider a car of mass \(m \) traveling along a road with wind resistance (proportional to the speed of the car) as shown in the diagram. Applying Newton’s 2\(^{nd} \) law in the direction of travel and neglecting friction, we can write

\[
\sum F = f(t) - cv = m\dot{v}
\]

or

\[
m\dot{v} + cv = f(t)
\]

Using Laplace transforms, the transfer function for the system is

\[
\frac{V}{F(s)} = \frac{1/m}{s + c/m}.
\] \(\text{(1)} \)

Open-Loop, Proportional Speed Control

Now consider *proportional, open-loop speed control* of the car as indicated in the block diagram. The system transfer function is

\[
\frac{V}{P(s)} = \frac{K/m}{s + c/m}
\] \(\text{(2)} \)

The final value due to a unit step input \(P(s) = 1/s \) is

\[
V_{ss} = (K/m)/(c/m) = K/c.
\]

Fig. 1 shows the step response of this system for \(K = 300, 600, \) and \(900 \) using the parameters shown in Eq. (3). Note that the value of \(K \) affects the magnitude of the response, but it does not affect how long the car takes to reach a new final speed.

\[
m = 100 \text{ slugs} \]
\[
c = 20 \text{ (lb-s/ft)}
\] \(\text{(3)} \)
Closed-Loop, Proportional Speed Control

Finally, consider the proportional, closed-loop speed control of the car as indicated in the block diagram. The transfer function of this system is

\[
\frac{V}{V_d}(s) = \frac{K/m}{s + c/m + K/m} = \frac{K/m}{s + (c + K)/m}
\]

The final value due to a step input \(V_d(s) = 1/s \) is

\[
v_{ss} = \frac{K}{m} \frac{1}{(c + K)/m} = \frac{K}{c + K}
\]

Fig. 2 shows the step response of the system for \(K = 300, 600, \) and 900. Note that the value of \(K \) affects both the magnitude of the response and the time it takes the car to reach a new final speed.
In theory, the value of K could be \textit{increased} further to make the steady state response (v_{ss}) closer to the commanded value ($= 1 \text{ (ft/s)}$) and the settling time smaller and smaller. However, as these changes are made, the force required to move the car becomes higher and higher. Fig. 3 shows the driving force $f(t)$ associated with the \textit{unit step responses} in Fig. 2. Clearly, higher velocity commands and higher gains will cause the forces to eventually become unrealistic.