Fig. 1 shows a spring-mass-damper (SMD) system with a **force actuator** for position control. The spring has stiffness k, the damper has coefficient c, the block has mass m, and the position of the mass is measured by the variable x.

The transfer function of the SMD with the actuating force F_a as input and the position x as output is

$$\frac{X(s)}{F_a} = \frac{1}{ms^2 + cs + k}$$

Assuming ideal actuator and sensor responses, the closed-loop position control of the SMD can be described using the following block diagram. Here, X_d represents the **desired position**, and $G_c(s)$ represents the **transfer function** of the controller.

For the following analyses, it is assumed the SMD parameters are: $m=1$ slug, $c=8.8$ (lb-s/ft), and $k=40$ (lb/ft). This represents an **under-damped, second-order plant** with

$$\omega_n = \sqrt{40} = 6.325 \text{ (rad/s)} \approx 1 \text{ (Hz)}$$

$$\zeta = \frac{8.8}{2\sqrt{40}} = 0.696 \approx 0.7$$
Proportional Control

- For proportional control, \(G_c(s) = K \), and the loop and closed-loop transfer functions are

\[
GH(s) = \frac{K}{s^2 + 8.8s + 40} \quad \frac{X}{X_d}(s) = \frac{K}{s^2 + 8.8s + (40 + K)}
\] (2)

- Using \(GH(s) \), the RL diagram for the closed-loop system for \(K \geq 0 \) is shown in Fig. 2. Note that as the value of \(K \) is increased, the closed-loop poles move straight up/down, indicating that the natural frequency is increased and the damping ratio is decreased as \(K \) is increased.

- This is a type-zero system and hence will have a finite steady-state error for a step input. Using the final-value theorem and the closed-loop transfer function, \(x_{ss} \) the final value of \(x(t) \) to a unit step command is

\[
x_{ss} = \lim_{s \to 0} \left(s \cdot \frac{1}{s} \cdot \frac{K}{s^2 + 8.8s + (40 + K)} \right) = \frac{K}{40 + K} < 1
\] (3)

- Eq. (3) indicates that large values of \(K \) lead to small steady-state error; however, they also lead to a faster, less damped responses.

- This conclusion is verified in Fig. 3 which shows the closed-loop step responses for gains \(K \) of 100, 500, and 2000. Clearly, it is not possible to achieve low steady-state error and good transient response using only proportional control. To remove the steady-state error and have better response, integral and/or derivative terms must be included.
Proportional-Integral (PI) Control

- For proportional-integral (PI) control: \[G_c(s) = K_p + \frac{K_i}{s} = \frac{K_p(s + a)}{s} \] (4)

- Here, \(K_p \) and \(K_i \) represent the proportional and integral gains, and \(a = K_i/K_p \) is the ratio of the integral and proportional gains. In this case, the loop and closed-loop transfer functions are

\[
GH(s) = \frac{K_p(s + a)}{s(s^2 + 8.8s + 40)} \quad \frac{X}{X_d}(s) = \frac{K_p(s + a)}{s(s^2 + 8.8s + 40) + K_p(s + a)}
\] (5)

- Using integral control makes the system type-one, so the steady-state error due to a step input is zero. This can be verified using the final value theorem to show that \(x_{ss} = 1 \) when the input is a unit step function.

- Fig. 4 shows the RL diagram for the closed-loop system with \(a = 3 \). It also shows the location of the closed-loop poles for a proportional gain \(K_p \approx 50 \). Fig. 5 shows the closed-loop step response for \(a = 3 \) and \(K_p = 25, 50, \) and 75.

- Integral control has removed the steady-state error and improved the transient response, but it has also increased the system settling time.

Figure 4. Root Locus Diagram for PI Control \((a = 3)\)

Figure 5. Step Response for PI Control \((a = 3)\)
for Various Proportional Gains
Proportional-Derivative (PD) Control

- For **proportional-derivative (PD) control**:
 \[G_c(s) = K_p + K_D s = K_D(s + a) \]
 \((6) \)

- \(K_p \) and \(K_D \) represent the **proportional** and **derivative gains**, and \(a = K_F / K_D \) is the ratio of the proportional and derivative gains. The loop and closed-loop transfer functions are

 \[\frac{GH(s)}{X_d(s)} = \frac{K_D(s + a)}{s^2 + 8.8s + 40} \]

 \[X_d(s) = \frac{K_D(s + a)}{(s^2 + 8.8s + 40) + K_D(s + a)} \]
 \((7) \)

- Without integral control, this is a **type-zero** system, and hence will have a **finite steady-state error** to a unit step input. Using the final-value theorem and the closed-loop transfer function, \(x_{ss} \) the final value of \(x(t) \) to a unit step command is

 \[x_{ss} = \lim_{s \to 0} \left(s \cdot \frac{K_D(s + a)}{(s^2 + 8.8s + 40) + K_D(s + a)} \right) = \frac{K_Da}{40 + K_Da} = \frac{K_P}{40 + K_P} < 1 \]
 \((8) \)

As with proportional control, the **larger the proportional gain**, the **smaller the steady-state error**.

- **Fig. 6** shows the RL diagram for the closed-loop system with \(a = 10 \). It also shows the location of the closed-loop poles for \(K_D \approx 25.6 \). **Fig. 7** shows the **closed-loop step response** for \(a = 10 \) and derivative gains of \(K_D = 10, 27, 50, \) and 75.

- The PD controller has **decreased the system settling time** considerably; however, to control the steady-state error, the derivative gain \(K_D \) must be high. This **decreases the response times** of the system and can make it **susceptible to noise**.

![Figure 6. Root Locus Diagram for PD Control (a = 10)](image)

![Figure 7. Step Response for PD Control (a = 10) for Various Derivative Gains](image)
Proportional-Integral-Derivative Control

- For proportional-integral-derivative (PID) control:
 \[
 G_c(s) = K_p + \frac{K_I}{s} + K_D s = \frac{K_D(s^2 + as + b)}{s}
 \] (9)

- \(K_p, K_I, \) and \(K_D \) represent the proportional, integral, and derivative gains, \(a = \frac{K_p}{K_D} \) is the ratio of the proportional and derivative gains, and \(b = \frac{K_I}{K_D} \) is the ratio of the integral and derivative gains. In this case, the loop and closed-loop transfer functions are

\[
GH(s) = \frac{K_D(s^2 + as + b)}{s(s^2 + 8.8s + 40)}
\]

\[
\frac{X}{X_d}(s) = \frac{K_D(s^2 + as + b)}{s(s^2 + 8.8s + 40) + K_D(s^2 + as + b)}
\] (10)

- Again, with integral control, the system is type-one and has zero steady-state error for a step input.
- **Fig. 8** shows the RL diagram of the closed-loop system for \(a = 15 \) and \(b = 50 \). The location of the closed-loop poles for \(K_D \approx 15.8 \) is also shown.
- **Fig. 9** shows the step response of the closed-loop system for \(a = 15, b = 50, \) and various derivative gains.
- The PID controller has removed steady-state error and decreased system settling times while maintaining a reasonable transient response.

Figure 8. Root Locus Diagram for PID Control
\((a = 15, b = 50)\)

Figure 9. Step Response for PID Control
\((a = 15)\)
\((b = 50)\) for Various Derivative Gains