ME 555 Intermediate Dynamics
Angular Momentum and Kinetic Energy of a Simple Crank Shaft

The figure to the right shows a simple crank shaft consisting of seven segments, each considered to be a slender bar. Each segment of length \(\ell \) has mass \(m \). There are six segments of length \(\ell \) and one segment of length \(2\ell \) (segment 4). The mass center of the system is \(G \) and is located on the axis of rotation.

The system is undergoing fixed axis rotation, so \(H_G \), the angular momentum of the system about its mass center is calculated as follows:

\[
\begin{align*}
H_G \cdot \mathbf{i}' & = \begin{bmatrix} I_{x'x'}^G & -I_{x'y'}^G & -I_{x'z'}^G \\ -I_{y'x'}^G & I_{y'y'}^G & -I_{y'z'}^G \\ -I_{z'x'}^G & -I_{z'y'}^G & I_{z'z'}^G \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \omega \end{bmatrix} = \begin{bmatrix} -I_{x'z'}^G \omega \\ -I_{y'z'}^G \omega \\ I_{z'z'}^G \omega \end{bmatrix} \\
\end{align*}
\]

where

\[
I_{zz}^G = \sum_{i=1}^{7} \left(I_{zz}^G \right)_i = 0 + \frac{1}{3} m \ell^2 + m \ell^2 + \frac{1}{12} (2m)(2\ell)^2 + m \ell + \frac{1}{3} m \ell^2 + 0 \\
= \frac{10}{3} m \ell^2
\]

\[
I_{x'z'}^G = \sum_{i=1}^{7} \left(I_{x'z'}^G \right)_i = 0 + m(\ell)(-\ell) + m(\ell)(-\ell) + 0 + m(-\ell)(\ell) + m(-\ell) = \frac{10}{3} m \ell^2
\]

\[
I_{y'z'}^G = 0 \quad \text{(since the } X'Z \text{ plane is a plane of symmetry)}
\]

So,

\[
H_G = 2m \ell^2 \omega \mathbf{i}' + \left(\frac{10}{3} m \ell^2 \omega \right) \mathbf{k}
\]

The kinetic energy of the crank shaft is found from the velocity and angular momentum vectors to be

\[
K = \frac{1}{2} m (\mathbf{\dot{r}}_G)^2 + \frac{1}{2} \mathbf{\dot{\omega}}_B \cdot H_G = \frac{1}{2} \mathbf{\dot{\omega}}_B \cdot H_G = \frac{1}{2} (\omega \mathbf{k}) \cdot H_G = \frac{10}{6} m \ell^2 \omega^2
\]