1. Consider the linear transformation

\[T(x) = (2x_1 - 3x_2, x_1 - x_2) \]

(a) Find the matrix \(A \) of this transformation. If it is invertible find the inverse matrix \(A^{-1} \).

(b) Draw the image of the parallelogram with vertices \((1,1), (1,2), (3,2), (3,3)\) under the linear transformation \(T \) and find the area of the image. Explain.

2. Find the symmetric matrix that represents the quadratic form

\[q(x) = x^2 + 4y^2 + 9z^2 - 2xy - 2xz \]

and determine if this quadratic form is positive definite, negative definite, indefinite or none of these.
3. (a) Find the domain of the following function and make a sketch of it

\[f(x, y) = \left(\frac{2xy}{x^4 - y^2}, \sqrt{\ln(x^2 + y^2)} \right) \]

(c) Is this function continuous at points of its domain? Explain.

4. Use the Chain Rule to find the derivative of \(g \circ f \) at the point \(a = (1, 1) \)

\[g = (\sin(xy), x^2y), \quad f = (x + y, x - y) \]
5. Suppose that the pressure in space is given by the function
\[P(x, y, z) = e^{x+y+z^2} \]
and let \(\mathbf{x}(t) = (t^2 - t, t - 1, t^3 - 1) \) be a parametrization for a path. Find the rate of change in pressure along the path when \(t = 1 \)
\[\frac{d}{dt} P(\mathbf{x}(t)) = \]