There was some confusion how to compute the pointers for the first, second, and third quartiles.

The following procedure is used to find the quartile numbers:

1. If the quartile pointer is an integer, select the quartile value corresponding to that positioning quartile pointer from an ordered array.

   - Say we have 15 observations:
   - 1, 3, 4, 6, 7, 8, 8, 9, 11, 11, 13, 15, 16, 17, 19
   - Q1ptr = (n+1) / 4 = (15+1) / 4 = 4
   - Q2ptr = 2(n+1) / 4 = 2(15+1) / 4 = 8
   - Q3ptr = 3(n+1) / 4 = 3(15+1) / 4 = 12
   - Therefore, Q1 = 6, Q2 = 9, Q3 = 15

2. If the quartile pointer is halfway between two integers, select the computed average of their corresponding values.

   - Say we have 5 observations.
   - 1, 3, 4, 6, 7
   - Q1ptr = (n+1) / 4 = (5+1) / 4 = 1.5
   - Q2ptr = 2(n+1) / 4 = 2(5+1) / 4 = 3.0
   - Q3ptr = 3(n+1) / 4 = 3(5+1) / 4 = 4.5
   - Therefore, Q1 = 2, Q2 = 4, Q3 = 6.5

3. If the quartile pointer is neither an integer nor a value halfway between two integers, select the quartile value corresponding to that rounded off positioning quartile pointer from an ordered array.

   - Say we have 6 observations:
   - 1, 3, 4, 6, 7, 8
   - Q1ptr = (n+1) / 4 = (6+1) / 4 = 1.75 ~ 2
   - Q2ptr = 2(n+1) / 4 = 2(6+1) / 4 = 3.5
   - Q3ptr = 3(n+1) / 4 = 3(6+1) / 4 = 5.25 ~ 5
   - Therefore, Q1 = 3, Q2 = 5, Q3 = 7