Fundamentals of Jet Engine Control

Dr. Sanjay Garg
Chief, Controls and Dynamics Branch
Ph: (216) 433-2685
FAX: (216) 433-8990
email: sanjay.garg-1@nasa.gov
http://www.lerc.nasa.gov/WWW/cdtb
Outline

– The Engine Control Problem
– Safety and Operational Limits
– Historical Engine Control Perspective
– Modeling and Simulation
– Basic Control Architecture
– Advanced Concepts
Basic Engine Control Concept

- **Objective:** Provide smooth, stable, and stall free operation of the engine via single input (PLA) with no throttle restrictions
 - Reliable and predictable throttle movement to thrust response

- **Issues:**
 - Thrust cannot be measured
 - Changes in ambient condition and aircraft maneuvers cause distortion into the fan/compressor
 - Harsh operating environment – high temperatures and large vibrations
 - Safe operation – avoid stall, combustor blow out etc.
 - Need to provide long operating life – 20,000 hours
 - Engine components degrade with usage – need to have reliable performance throughout the operating life
Since Thrust (T) cannot be measured, use Fuel Flow WF to Control shaft speed N

\[T = F(N) \]
Environment within a gas turbine

Aerodynamic Buffeting
120 dB/Hz to 10kHz

2000+°C
Flame temperature
- 40°C ambient

Cooling air at 650+°C

20000+ hours
Between service

40+ Bar
Gas pressures

8mm+
Shaft movement

1100+°C
Metal temperatures

50 000g centrifugal acceleration
>100g casing vibration to beyond 20kHz

10 000rpm
0.75m diameter

2.8m Diameter

Foreign objects
Birds, Ice, stones
Air mass flow
~2 tonne/sec

1000 rpm
0.75m diameter

2000+ºC
Flame temperature
- 40ºC ambient

Cooling air at 650+ºC

20000+ hours
Between service

40+ Bar
Gas pressures

8mm+
Shaft movement

1100+ºC
Metal temperatures

50 000g centrifugal acceleration
>100g casing vibration to beyond 20kHz

10 000rpm
0.75m diameter

2.8m Diameter

Foreign objects
Birds, Ice, stones
Air mass flow
~2 tonne/sec
Operational Limits

- **Structural Limits:**
 - Maximum Fan and Core Speeds – N1, N2
 - Maximum Turbine Blade Temperature
- **Safety Limits:**
 - Adequate Stall Margin – Compressor and Fan
 - Lean Burner Blowout – minimum fuel
- **Operational Limit:**
 - Maximum Turbine Inlet Temperature – long life

LPC - Low Pressure Compressor
HPC - High Pressure Compressor
HPT - High Pressure Turbine
LPT - Low Pressure Turbine
N1 - Fan Speed
N2 - Core Speed
Historical Engine Control

- Fuel flow is the only controlled variable.
 - Hydro-mechanical governor.
 - Minimum-flow stop to prevent flame-out.
 - Maximum-flow schedule to prevent over-temperature

- Stall protection implemented by pilot following cue cards for throttle movement limitations

Glenn Research Center
Controls and Dynamics Branch at Lewis Field
Typical Current Engine Control

- Allows pilot to have full throttle movement throughout the flight envelope
 - There are many controlled variables – we will focus on fuel flow

- Engine control logic is developed using an engine model to provide guaranteed performance (minimum thrust for a throttle setting) throughout the life of the engine
 - FAA regulations provide a minimum rise time for thrust
Engine Modeling

- Steady State performance obtained from cycle calculations derived from component maps obtained through detailed component modeling and component tests
 - Corrected parameter techniques used to reduce the number of points that need to be evaluated to estimate engine performance throughout the operating envelope
- Dynamics modeled through inertia (the rotor speeds), combustion delays, heat soak and sink modeling etc.
 - Computationally intensive process since it is important to maintain mass/momentum/energy balance through each component
- Detailed thermo-dynamic cycle decks developed and parameters adjusted to match engine test results
- Simplified models generated to develop and evaluate control design
Engine Component Modeling – Modern Turbofan Engine

Aero-Thermodynamics
- Compressor/Fan Maps: PR, Corr. Flow & Efficiency as functions of Shaft Speed & R-line
- Turbines: Corr. Flow and Efficiency as functions of Shaft Speed & PR

Dynamics
- Two physical states: fan speed, core speed
- Actuator/sensor dynamics: first-order lags
- Combustion delay

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Engine Dynamic Modeling – Historical Perspective

- Dynamic behavior of single-shaft turbojet first studied at NACA Lewis Laboratory in 1948
- The study showed that the transfer function from fuel flow to engine speed can be represented by a first order lag linear system with a time constant which is a function of the corrected fan speed: \(\frac{N(s)}{WF(s)} = \frac{K}{(as+1)} \) with \(a = f(N) \)
Limits are implemented by limiting fuel flow based on rotor speed.
- Maximum fuel limit protects against surge/stall, over-temp, over-speed and over-pressure.
- Minimum fuel limit protects against combustor blowout.
- Actual limit values are generated through simulation and analytical studies.

Implementing Limits for Engine Control

\[
\frac{Wf}{P_{S_{30}}}
\]

\[
N_{2}^R
\]
Typical Sensors Used for Engine Control

- N1
- N2
- EGT – Exhaust Gas Temp
- P2
- T2
- P25
- T25
- Ps3
- T3
- WF36
Typical Modern FADEC Control Architecture

All regulators produce incremental fuel flow commands

- **Structural limit regulators**
 - T_{48}
 - P_{S3}
 - $N2$

- **Fan speed regulator**
 - T_{20}
 - $N1_{dndr}$

- **Thrust command**
 - Throttle
 - Power Management

- **Combustion blowout regulator**
 - P_{S3}

- **High Limits**
 - $K_{T48}(s)$
 - $K_{P33}(s)$
 - $K_{N2}(s)$

- **Low Limit**
 - $K_{P33}(s)$

- **Burnout limit regulators**
 - P_{S3}
 - $N2_{c}$

- **Acceleration/Deceleration schedule**
 - $rac{dW_{f}}{dt}$

- **Fuel flow command**
 - W_{f}

- **Min**

- **Max**

Glenn Research Center

Controls and Dynamics Branch

at Lewis Field
Control Law Design Procedure

- The various control gains K are determined using linear engine models and linear control theory
 - Proportional + Integral control provides good fan speed tracking
 - Control gains are scheduled based on PLA and Mach number
- Control design evaluated throughout the envelope using a nonlinear engine simulation and implemented via software on FADEC processor
- Control gains are adjusted to provide desired performance based on engine ground and altitude tests and finally flight tests

![Control Law Design Procedure Diagram]

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Burst-Chop Example – Inputs/Outputs

- TRA (deg)
- Nf (rpm)
- VSV pos. (deg)
- VBV pos. (% open)
- Wf (pph)
- Wf/Ps30 (pph/psi)
- Nc (rpm)
- T48 (°R)
- Ps30 (psia)
Burst-Chop Example - Stall Margins

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Model-Based Controls and Diagnostics

Actuator Commands
- Fuel Flow
- Variable Geometry
- Bleeds

Adaptive Engine Control

On-Board Model & Tracking Filter
- Efficiencies
- Flow capacities
- Stability margin
- Thrust

Ground Based Diagnostics
- Fault Codes
- Maintenance/Inspection Advisories

Ground Level

Selected Sensors

Sensor Validation & Fault Detection

Sensor Estimates

Sensor Measurements

Component Performance Estimates

Actuator Positions

Engine Instrumentation
- Pressures
- Fuel flow
- Temperatures
- Rotor Speeds

Actuator Commands
- Fuel Flow
- Variable Geometry
- Bleeds

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Engine Performance Deterioration Mitigation Control

• Motivation—Thrust-to-Throttle Relationship Changes with Degradation in Engines Under Fan Speed Control

Throttle Fan Speed Thrust

Degradation-induced shift

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
Engine Performance Deterioration Mitigation Control (EPDMC)

- The proposed retrofit architecture:
 - Adds the following “logic” elements to existing FADEC:
 - A model of the nominal throttle to desired thrust response
 - An estimator for engine thrust based on available measurements
 - A modifier to the Fan Speed Command based on the error between desired and estimated thrust
 - Since the modifier appears prior to the limit logic, the operational safety and life remains unchanged

Glenn Research Center
Controls and Dynamics Branch
at Lewis Field
EPDMC Evaluation
Thrust response for Typical Mission

With EPDMC

- Throttle to thrust response is maintained – no “uncommanded” thrust asymmetry

Without EPDMC

Glenn Research Center
Controls and Dynamics Branch at Lewis Field
Active Stall Control

- Detect stall precursive signals from pressure measurements.
- Develop high frequency actuators and injector designs.
- Actively stabilize rotating stall using high velocity air injection with robust control.

- Demonstrated significant performance improvement with an advanced high speed compressor in a compressor rig with simulated recirculating flow

Glenn Research Center
Controls and Dynamics Branch at Lewis Field
Summary

• Provided an overview and historical perspective of engine control design
• The control design enables smooth and safe operation of the engine from one steady-state to another through implementation of various limits
• There are tremendous opportunities to improve and revolutionize aircraft engine performance through “proper” use of advanced control techniques
References

NASA TMs are available for free download at: http://gltrs.grc.nasa.gov/