On induced Folkman numbers

Andrzej Dudek∗ Reshma Ramadurai† Vojtěch Rödl‡§

June 15, 2011

Abstract

In 1970, Folkman proved that for any graph G there exists a graph H with the same clique number as G. In addition, any r-coloring of the vertices of H yields a monochromatic copy of G. For a given graph G and a number of colors r let $f(G,r)$ be the order of the smallest graph H with the above properties. In this paper, we give a relatively small upper bound on $f(G,r)$ as a function of the order of G and its clique number.

1 Introduction

We write $H \rightarrow (G)_{v}^{r}$ if for every r-coloring of the vertices of H, there exists a monochromatic copy of G. If such a monochromatic copy is also an induced copy, then we write $H \rightarrow_{ind} (G)_{v}^{r}$. Let $\omega(G)$ be the clique number of G, i.e., the order of a maximal clique in G. Folkman [3] proved that for every graph G there exists a graph H such that $H \rightarrow (G)_{v}^{r}$ and $\omega(H) = \omega(G)$. Clearly $\omega(H) \geq \omega(G)$ for any graph with $H \rightarrow (G)_{v}^{r}$ and thus Folkman’s theorem is in this sense, the best possible. In this paper we consider a more general problem. Let the induced Folkman number be defined as

$$F(G,r) = \min\{|V(H)| : H \rightarrow_{ind} (G)_{v}^{r} \text{ and } \omega(H) = \omega(G)\}.$$

Clearly, $F(G,r) \geq f(G,r)$, where $f(G,r)$ is the function considered in the abstract, and thus, an upper bound on $F(G,r)$ also yields an upper bound on $f(G,r)$. It was

∗Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, andrzej.dudek@wmich.edu
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, rramadur@andrew.cmu.edu
‡Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, rodl@mathcs.emory.edu
§Research partially supported by NSF grant DMS 0800070 and Emory University Research Committee Grant
observed in [5] that $F(G, r)$ is well-defined for any graph G and positive integer r. However, the argument from [5] does not give a good bound on $F(G, r)$. Subsequently, in [1], the authors gave a different proof which yields a relatively small bound.

Theorem 1 ([1]) Let r be a fixed natural number. Then, for every graph G of order n,

$$F(G, r) \leq Cn^3 \log^3 n,$$

where $C > 0$ is a constant depending only on r.

It was also shown in [1] that $F(K_n, r) \leq Cn^2 \log^4 n$ for some constant $C = C(r)$.

In this paper, we extend previous results and refine the bound on $F(G, r)$, conditioning on the clique number of G.

Theorem 2 Let r be a fixed natural number. Then, for every graph G of order n and clique number ω,

$$F(G, r) \leq Cn^3 \log^\omega n,$$

where $C > 0$ is a constant depending only on r and $c > 0$ is an absolute constant.

Remark 3 We prove Theorem 2 with $c = 5$ and in order to simplify the presentation we do not attempt to find the optimal constant c which may be obtained using the approach we consider here. We also note that the best lower bound we know (attained for $\omega = \Theta(n)$) is quadratic in $n = |V(G)|$.

Finally, it is also worth mentioning that a related result (without any conditions on the clique number) was obtained by Eaton and the third author [2]. They showed that for every natural number r there is a constant $C = C(r)$ such that for every graph G of order n,

$$\min\{|V(H)| : H \rightarrow (G)_r\} \leq Cn^2 \log n.$$

The base of all logarithms in this paper is e.

2 Proof of Theorem 2

Set $c = 5$. We will assume that n is a sufficiently large number, wherever necessary.

2.1 Construction

Let $G = (V, E)$ be a graph of order n with $\omega = \omega(G)$. Note that if $\omega \leq \log^2 n$ then

$$\frac{n^3}{\omega} \log^c n \geq n^3 \log^{c-2} n = n^3 \log^3 n,$$
and consequently Theorem 1 yields the statement. Thus, we may assume that
\[\log^2 n \leq \omega \leq n. \]

Let \(r \geq 1 \) be a fixed natural number. We fix a prime number \(q \) such that
\[\sqrt{\frac{n^3}{\omega}} \log^{\frac{2}{3}} n \leq q + 1 \leq 2\sqrt{\frac{n^3}{\omega}} \log^{\frac{2}{3}} n, \tag{1} \]
which is always possible by Bertrand’s Postulate.

Let \(\mathcal{H} = (W, \mathcal{F}) \) be the \((q + 1)\)-uniform, \((q + 1)\)-regular hypergraph formed by the lines of the projective plane of order \(q \). It is well known that projective planes of order \(q \) exist for all primes \(q \) (see, e.g., [4]). Then \(\mathcal{H} \) has the following properties:

(a) For every pair of distinct vertices \(w, w' \in W \), there exists a unique hyperedge \(K \in \mathcal{F} \) such that \(w, w' \in K \);

(b) Moreover,
\[|W| = |\mathcal{F}| = q^2 + q + 1 < (q + 1)^2 \leq 4\frac{n^3}{\omega} \log^c n. \tag{2} \]

We now construct a “random” graph \(H = H_G \) on \(\mathcal{H} \). We partition each hyperedge of \(\mathcal{H} \) into \(n + 1 \) sets of vertices where \(n \) of them have size
\[x = \lfloor 2r \log n \rfloor, \]
i.e., for each hyperedge \(F \in \mathcal{F} \), we partition it into \(F = X_0 \cup X_1 \cup \cdots \cup X_n \) with \(|X_0| = q + 1 - nx \) and \(|X_i| = x \) for \(i = 1, 2, \ldots, n \). Note that
\[|X_0| \geq \sqrt{\frac{n^3}{\omega}} \log^{\frac{2}{3}} n - 2rn \log n \geq n \log^{\frac{2}{3}} n - 2rn \log n \gg \log n, \]
and hence \(X_0 \) is much bigger than the other parts in the partition. For each hyperedge \(F \in \mathcal{F} \), we choose one such ordered partition uniformly at random. Suppose \(V = \{v_1, v_2, \ldots, v_n\} \) is the vertex set of \(G \). Then for each \(u \in X_i, w \in X_j, 1 \leq i < j \leq n \), we let \(\{u, w\} \) be an edge in \(H \) if and only if \(\{v_i, v_j\} \) is an edge in \(G \). Observe that the graph \(H \) obtained this way is well-defined because every pair of vertices in \(W \) is contained in exactly one hyperedge of \(\mathcal{H} \).

We will show that there exists a graph \(H \) constructed on \(\mathcal{H} \) with the following properties:

(i) \(\omega(H) = \omega(G) \);

(ii) For every set \(U \subseteq W, |U| = \lfloor |W| / r \rfloor \), the graph \(H[U] \) contains \(G \) as an induced subgraph.
2.2 Property (i)

To establish that $\omega(H) = \omega(G)$, we find it convenient to first introduce a randomly chosen graph $H' = H_{K_n}$, constructed similarly as H_G but with G replaced by K_n. In other words, every hyperedge $F \in \mathcal{F}$ contains a complete n-partite graph on $X_1 \cup \cdots \cup X_n$ and an empty graph on X_0. We show that with probability tending to one (as n goes to infinity), the only copies of $K_{\omega+1}$ in H' are those that are contained completely within some hyperedge of \mathcal{H}. This will prove that the graph H obtained from H' by deleting the extra edges cannot have a clique of size greater than that of G, and hence $\omega(H) = \omega(G)$.

We first derive an expression for the probability that any set of vertices induces a clique in H'. For any $S \subseteq W$, define

$$\mathcal{F}(S) = \{F \in \mathcal{F} : |S \cap F| \geq 2\}.$$ \hfill (3)

Let A_S be the event that S induces a clique in H'. Notice that if A_S occurs, then the event $A_{S \cap F}$ occurs for every $F \in \mathcal{F}(S)$. Since all $A_{S \cap F}$ are independent, we have

$$\Pr(A_S) = \prod_{F \in \mathcal{F}(S)} \Pr(A_{S \cap F}).$$

Also notice that for $F \in \mathcal{F}(S)$, the probability $\Pr(A_{S \cap F})$ equals the probability that for a fixed partition $F = X_0 \cup \cdots \cup X_n$ a randomly selected subset $S_F \in \binom{S}{|S \cap F|}$ satisfies $S_F \cap X_0 = \emptyset$ and $|S_F \cap X_i| \leq 1$ for each $1 \leq i \leq n$. Thus,

$$\Pr(A_{S \cap F}) = \binom{n}{|S \cap F|} \left(\frac{q+1}{|S \cap F|}\right)^{|S \cap F|} \leq \left(\frac{n}{q+1}\right)^{|S \cap F|}.$$ \hfill (4)

Subsequently, the choice of x yields

$$\Pr(A_S) \leq \left(\frac{n}{q+1}\right)^{\sum_{F \in \mathcal{F}(S)} |S \cap F|} \leq \left(\frac{2rn \log n}{q+1}\right)^{\sum_{F \in \mathcal{F}(S)} |S \cap F|}.$$ \hfill (4)

Let

$$\alpha = \frac{10 \log n}{3 \log \log n}.$$ \hfill (5)

Let $S \subseteq W$ be a subset of size $\omega + 1$ such that

$$S \not\subset F \quad \text{for all} \quad F \in \mathcal{F}. \hfill (5)$$

Observe that $\mathcal{F}(S)$ introduced in (3) satisfies $|\mathcal{F}(S)| \geq 2$. We consider the following two cases:

(I) S intersects “many” hyperedges, which we quantitatively characterize by $\sum_{F \in \mathcal{F}(S)} |S \cap F| > \alpha(\omega + 1)$;
(II) S intersects only a “few” hyperedges, which we quantitatively characterize by

$$\sum_{F \in \mathcal{F}(S)} |S \cap F| \leq \alpha (\omega + 1).$$

Let A_1 and A_2 denote the events that H' contains a clique $H'[S] = K_{\omega+1}$ induced on a subset S of types (I) and (II), respectively. Since the probability that H' contains $K_{\omega+1}$ such that $K_{\omega+1} \not\subseteq F$ for all $F \in \mathcal{F}$ can be bounded from above by $\Pr(A_1) + \Pr(A_2)$, it suffices to show that each of these probabilities is $o(1)$ with respect to n.

Claim 1 $\Pr(A_1) = o(1)$.

Proof. Let $S \subseteq W$ be a set of size $\omega + 1$ of type (I). From (4), the probability that $H'[S] = K_{\omega+1}$ is at most $\left(\frac{2r \log n}{q+1}\right)^{\alpha(\omega+1)}$. Thus,

$$\Pr(A_1) \leq \left(\frac{|W|}{\omega + 1}\right) \left(\frac{2rn \log n}{q + 1}\right)^{\alpha(\omega+1)} \leq \left(\left|W\right| \left(\frac{2rn \log n}{q + 1}\right)^{\alpha}\right)^{\omega+1}.$$

Since in view of (2) and (1), $|W| \leq n^4$ and $q + 1 \geq n \log^{\frac{c}{2}} n$,

$$\Pr(A_1) \leq \left(n^4 \left(\frac{2r}{\log^{\frac{c}{2}} n}\right)^{\alpha}\right)^{\omega+1} = \exp\left\{ (\omega + 1) \left(4 \log n - \left(\frac{c}{2} - 1\right) \alpha \log \log n + O(\alpha)\right) \right\}.$$

Finally from the choice of c and α, we obtain that

$$\Pr(A_1) \leq \exp\{ (\omega + 1)(- \log n + o(\log n))\} = o(1).$$

□

Claim 2 $\Pr(A_2) = o(1)$.

Proof. Let $S \subseteq W$ be a set of type (II). For every $w \in S$, let

$$\deg(w) = |\{F : F \in \mathcal{F}(S) \text{ and } w \in F\}|.$$

Observe that $\sum_{w \in S} \deg(w) = \sum_{F \in \mathcal{F}(S)} |S \cap F| \leq \alpha(\omega + 1)$. This implies that there exists some $w \in S$ such that $\deg(w) \leq \alpha$. Also, since every pair of vertices in S belongs to some $F \in \mathcal{F}(S)$, we conclude that there exists a hyperedge $F_0 \in \mathcal{F}(S)$ with $w \in F_0$ such that $|S \cap F_0| \geq \frac{\omega}{\alpha}$. Moreover, since (5) implies that $S \not\subseteq F_0$, there exists at least one vertex $u \not\in S \setminus F_0$. Now set

$$t = \left\lceil \frac{\omega}{\alpha} \right\rceil.$$

Consequently, every set S of type (II) contains a subset T of size $t + 1$ inducing a clique K_{t+1} in which precisely t vertices lie in some hyperedge of \mathcal{H}.

5
Let A_3 be the event that there is a set T of size $t + 1$ inducing a clique K_{t+1} in which precisely t vertices lie in some hyperedge of \mathcal{H}. Clearly, $\Pr(A_2) \leq \Pr(A_3)$ and thus it suffices to show that $\Pr(A_3) = o(1)$. First note that

$$\sum_{F \in \mathcal{F}(T)} |T \cap F| = t + 2t = 3t.$$

Consequently, by (4)

$$\Pr(A_3) \leq |\mathcal{F}| \binom{q + 1}{t} |W| \left(\frac{2rn \log n}{q + 1}\right)^{3t}.$$

Since $|W| = |\mathcal{F}| \leq (q + 1)^2$,

$$\Pr(A_3) \leq (q + 1)^4 \left(\frac{\log n}{q + 1}\right)^t \left(\frac{8r^3n^3 \log^3 n}{(q + 1)^3}\right)^t \leq (q + 1)^4 \left(\frac{8r^3n^3 \log^3 n}{t(q + 1)^2}\right)^t.$$

Recall that $t \geq \frac{c \omega}{\alpha}$ and $(q + 1)^4 \geq \frac{n^3}{\omega} \log^c n$. Thus,

$$\Pr(A_3) \leq (q + 1)^4 \left(\frac{8r^3 \alpha}{\log^c n}\right)^t.$$

Moreover, since trivially, $(q + 1)^4 \leq n^7$ and $\alpha \leq \log n$, we obtain that

$$\Pr(A_3) \leq n^7 \left(\frac{8er^3}{\log^c n}\right)^t = \exp\{7 \log n - (c - 4)t \log \log n + O(t)\}.$$

Recall that by assumption $\omega \geq \log^2 n$. Hence,

$$t \geq \frac{\omega}{\alpha} \geq \log^2 n \frac{3 \log \log n}{10 \log n} \geq \log n,$$

and consequently, $\Pr(A_3)$ goes to zero as n tends to infinity. This completes the proof of Claim 2 and Property (i).

2.3 Property (ii)

Let $\mathcal{H} = (W, \mathcal{F})$ be the hypergraph defined in 2.1. For a fixed $U \subseteq W$, with $|U| = |W|/r$ (for simplicity, we assume that this is an integer), let B_U denote the event that $H[U]$ contains no induced copy of G. Note that if B_U occurs, then all events $B_{U \cap F}$, $F \in \mathcal{F}$ must occur. Thus, $B_U \subseteq \bigcap_{F \in \mathcal{F}} B_{U \cap F}$ and since all events $B_{U \cap F}$ are independent,

$$\Pr(B_U) \leq \prod_{F \in \mathcal{F}} \Pr(B_{U \cap F}).$$ (6)
We now obtain an upper bound on $\Pr(B_{U \cap F})$ for a fixed hyperedge $F \in \mathcal{F}$. Let $|U \cap F| = u_F$. Note that for a fixed i, $1 \leq i \leq n$, the probability that $U \cap X_i = \emptyset$ is equal to the probability that for a fixed partition $F = X_0 \cup \cdots \cup X_n$, a randomly chosen subset T with $|T| = u_F$ satisfies $T \cap X_i = \emptyset$. Hence, in view of $|X_i| = x$ for $1 \leq i \leq n$,

$$\Pr(B_{U \cap F}) \leq n \left(\frac{q + 1 - x}{u_F} \right) \leq n \exp \left\{ -\frac{x u_F}{q + 1} \right\}.$$

Consequently, by (6) and the fact that $|F| = |W|$,

$$\Pr(B_U) \leq n^{|W|} \exp \left\{ -\frac{x}{q + 1} \sum_{F \in \mathcal{F}} u_F \right\}.$$

Since \mathcal{H} is $(q + 1)$-regular, for any $U \subseteq W$,

$$\sum_{F \in \mathcal{F}} u_F = \sum_{F \in \mathcal{F}} |U \cap F| = |U|(q + 1) = (q + 1)|W|/r.$$

Thus,

$$\Pr(B_U) \leq n^{|W|} \exp \left\{ -x |W|/r \right\}.$$

We can bound the probability that there exists some $U \subseteq W$ with $|U| = |W|/r$ such that the graph induced by $H[U]$ does not induce a copy of G by bounding the probability of the union of the events B_U over all subsets $U \subseteq W$. Thereby, we obtain

$$\Pr \left(\bigcup_U B_U \right) \leq \left(\frac{|W|}{|W|/r} \right) n^{|W|} \exp \left\{ -x |W|/r \right\}$$

$$\leq (er)^{|W|/r} n^{|W|} \exp \left\{ -x |W|/r \right\}$$

$$= \exp \left\{ |W|/r \left(1 + \log r + r \log n - x \right) \right\}.$$

Since $x = \lfloor 2r \log n \rfloor > 2r \log n - 1$,

$$1 + \log r + r \log n - x \leq 2 + \log r - r \log n \ll 0$$

for n sufficiently large. Thus, $\Pr(\bigcup_U B_U) = o(1)$ and so $\Pr(\bigcap_U \overline{B_U}) = 1 - o(1)$, i.e., almost every graph H constructed on \mathcal{H} satisfies $H \rightarrow (G)_{r,v}$. This completes the proof of Theorem 2.

3 Remarks on the lower bound

Let G be a graph of order n with clique number ω. In this note, we gave a relatively small upper bound on $F(G, r)$ as a function of n and ω. Here we observe a simple lower bound on $F(G, r)$.
Consider the graph $G_0 = K_\omega \cup \overline{K}_{n-\omega}$ and let H be the graph satisfying $H \xrightarrow{\text{ind}} (G_0)_2^\nu$.

Clearly, H must contain many copies of K_ω. Starting with H, we find a copy of K_ω and remove it obtaining a graph H_1 (of order $|V(H)| - \omega$). We continue the process of removing K_ω repeatedly until we can no longer find a copy of K_ω. Let ℓ denote the number of repetitions and H_ℓ be the K_ω-free graph eventually obtained. We color the vertices of H_ℓ blue and the vertices of $H \setminus H_\ell$ red. Since H_ℓ does not contain any copy of K_ω, it also contains no copy of G_0. Since $H \xrightarrow{\text{ind}} (G_0)_2^\nu$, $H \setminus H_\ell$ must contain G_0.

On the other hand, the vertex set of $H \setminus H_\ell$ is a union of ℓ vertex disjoint cliques, and hence, it contains no independent set of size bigger than ℓ. Therefore, in order for $G_0 = K_\omega \cup \overline{K}_{n-\omega}$ to be an induced subgraph of $H \setminus H_\ell$, we must have $\ell \geq n - \omega$.

Consequently, $|V(H)| \geq |V(H \setminus H_\ell)| \geq \ell \omega \geq (n - \omega)\omega$.

Therefore,
\[
\max_G \{F(G, 2)\} \geq (n - \omega)\omega,
\]

where the maximum is taken over all graphs G of order n. In particular, by Theorem 2 we get
\[
\max_G \{F(G, 2)\} = \Theta \left(n^{2+o(1)} \right),
\]

where the maximum is taken over all graphs G of order n with clique number equals $n/2$.

In view of the current upper bound on $F(G, r)$ we propose the following problem.

Problem 1 Prove or disprove that
\[
\lim_{n \to \infty} \max_G \frac{F(G, r)}{n^2} = \infty,
\]

where the maximum is taken over all graphs G of order n and r is some fixed natural number.

Notice that in order to give an affirmative answer to Problem 1 it is enough to find a family of graphs $\mathcal{G} = \{G_1, G_2, \ldots \}$, G_n of order n, $n \geq 1$, such that
\[
\lim_{n \to \infty} \frac{F(G_n, r)}{n^2} = \infty.
\]

Let \mathcal{G}_0 be a family of graphs defined in the previous paragraphs with $\omega = \frac{n}{2}$, i.e., $G_0 = K_{\frac{n}{2}} \cup \overline{K}_{\frac{n}{2}}$. We already showed that $F(G_0, r) = \Omega(n^2)$. It is not clear if $F(G_0, r) \gg n^2$.

However, it is easy to see that without any conditions on the clique number we get
\[
\min \{|V(H)| : H \xrightarrow{\text{ind}} (G_0)_2^\nu \} = O(n^2).
\]

Indeed, let H be a union of $\frac{rn}{2} + 1$ vertex disjoint cliques $K_{r(\frac{n}{2}-1)+1}$. Then by the pigeonhole principle any r-coloring of vertices of H yields a monochromatic union of $\frac{rn}{2} + 1$ vertex disjoint cliques $K_{\frac{n}{2}}$. Consequently, $H \xrightarrow{\text{ind}} (G_0)_2^\nu$ and $|V(H)| = O(n^2)$, as required.
4 Acknowledgment

We would like to thank the referees for their valuable comments and suggestions.

References

