ECE 2100 Circuit Analysis
Fall 2022
version 18 November 2022

Instructor
Dr. Damon A. Miller, Associate Professor of Electrical and Computer Engineering, Western Michigan University, College of Engineering and Applied Sciences, Floyd Hall, Room A-240, 269.276.3158, 269.276.3151 (fax), damon.miller@wmich.edu, https://homepages.wmich.edu/~miller/, https://wmich.webex.com/meet/damon.miller.

Course Format Summary
This is only a summary; details are provided within this document.

Due dates will be strictly enforced this semester.
Late assignments will not be accepted without prior approval (as possible) and official documentation.

Lecture.
• This is an in-person class, though previously recorded lectures on the course material are available on ELearning. **CRITICAL NOTE:** These recorded lectures ARE NOT a substitute for class attendance. **Binge watching lectures WILL NOT prepare you for the lab or examinations.** The recorded lectures are for students that must miss a few classes and provide an opportunity to review course material. There are a few recorded lectures that provide material not covered in lecture as noted in the course schedule.
• You should attend all in-person lectures (note the possibility of unannounced quizzes).
• Homework is via the online McGraw-Hill connect® system.
• Exams will be conducted in-person during the scheduled lecture and final exam times.
• Dr. Miller is available in his office during office hours as posted here.

Laboratories
• In-person lab attendance is MANDATORY during the assigned meeting time. See the course schedule. Lab reports will not be accepted from students that do not attend the associated lab session.
• Lab reports and supporting work is submitted via ELearning to your lab instructor.

Note
This syllabus provides a detailed course schedule from which supplemental materials (e.g. lab handouts and previous exams) can be downloaded.

Office Hours
Dr. Miller is available for in-person office hours as posted in his schedule. Appointments at other times are requested by email to damon.miller@wmich.edu.
Laboratory Sections

Laboratory sessions and laboratory instructor office hours are held in the Electrical Circuit[s] Laboratory, Room B-215, Floyd Hall.

<table>
<thead>
<tr>
<th>MEETING TIME</th>
<th>INSTRUCTOR</th>
<th>EMAIL</th>
<th>OFFICE HOURS (start 2nd week of semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 6:30PM-9:10PM</td>
<td>Himanaga Emani</td>
<td>h.emani@wmich.edu</td>
<td>F 2-4PM</td>
</tr>
<tr>
<td>T 8:30AM-11:10AM</td>
<td>Himanaga Emani</td>
<td>h.emani@wmich.edu</td>
<td>F 2-4PM</td>
</tr>
<tr>
<td>T 2:30PM-5:10PM</td>
<td>Jadon Clugston</td>
<td>jadon.j.clugston@wmich.edu</td>
<td>W 3-5PM</td>
</tr>
<tr>
<td>T 6:30PM-9:10PM</td>
<td>Valliammai Palaniappan</td>
<td>valliammai.palaniappan@wmich.edu</td>
<td>F 2-4PM</td>
</tr>
<tr>
<td>W 6:30PM-9:10PM</td>
<td>Valliammai Palaniappan</td>
<td>valliammai.palaniappan@wmich.edu</td>
<td>F 2-4PM</td>
</tr>
<tr>
<td>R 8:30AM-11:10AM</td>
<td>Himanaga Emani</td>
<td>h.emani@wmich.edu</td>
<td>F 2-4PM</td>
</tr>
<tr>
<td>R 6:30PM-9:10PM</td>
<td>Jadon Clugston</td>
<td>jadon.j.clugston@wmich.edu</td>
<td>W 3-5PM</td>
</tr>
</tbody>
</table>

Tutors

Please visit https://wmich.edu/step/successcenter for tutoring services.

Catalog Description

ECE 2100 Circuit Analysis (3-3), 4 hrs. Analysis of linear electric circuits using methods based on Kirchhoff's laws and network theorems. RL, RC, and RLC transients. Sinusoidal steady state analysis.

Prerequisites: PHYS 2070 (or taken concurrently) and MATH 1230 or 1710; with a grade of “C” or better in all prerequisites.

Acknowledgements

ECE faculty members, including S. Durbin, J. Gesink, J. Kelemen, and F. Severance, contributed to course materials, including the course syllabus. Dr. Miller thanks current and past laboratory instructors that have provided improvements to this course. He also thanks Instructional Designer M. Strock and the Educational Technology Department for contributions to course materials, including this syllabus.

Copyright Information

Materials prepared by Dr. Miller are © 2022 Damon A. Miller. Other copyrights apply to materials such as text and images from books, datasheets, etc. Consult source documents for copyright information. Any lecture videos are for use in ECE 2100 only and must not be distributed in any way.

Course Overview

This course explores the analysis of linear circuits for constant (DC) and time-varying (AC) excitation using methods based on Ohm’s Law, Kirchhoff’s Voltage Law (KVL), Kirchhoff’s Current Law (KCL), and network theorems. Transient responses of first and second-order circuits are found by solving differential equations. Particular emphasis is placed on using complex numbers (phasors) to analyze circuits in the sinusoidal steady state owing to the importance of sinusoids in electric power distribution and electronic circuit design. Students move from analysis to the design of practical circuits including voltmeters, ammeters, and filters. Operational amplifier applications are explored in lecture and lab. The course includes hands-on learning via a rigorous laboratory experience and extensive use of circuit simulation software.

Course Objectives

This course explores

1. Electric charge, current, voltage, energy, and power;
2. Analysis of linear DC circuits using Ohm's law, Kirchhoff's Voltage Law (KVL, mesh analysis), and Kirchhoff's Current Law (KCL, nodal analysis);
3. Network analysis techniques including superposition, source transformations, and Thevenin and Norton's theorems;
4. Design of DC voltmeters and ammeters using d'Arsonval movement meters;
5. Analysis and design of electronic circuits, including amplifiers and filters, that utilize operational amplifiers;
6. Terminal characteristics of capacitors and inductors;
7. Analysis of steady state linear AC circuits containing dependent and independent sources, resistors, capacitors, and inductors;
8. DC and AC power calculations including power factor correction;
9. Determining the step response of first and second order linear circuits;
10. Representing the step response as a sum of a transient and steady state response and a natural and forced response;
11. Analysis, simulation, and experimental validation of DC circuits;
12. Analysis and simulation of AC circuits;
13. Use of test instrumentation such as voltmeters, ammeters, ohmmeters, signal generators, and oscilloscopes;
14. Thorough and accurate documentation of laboratory work using a laboratory notebook;
15. Thorough and accurate documentation of laboratory results using a laboratory report; and
16. Functioning as an effective engineering team member.

Textbook and Materials

Lecture

Required:
You need the text and access to the online McGraw-Hill Education connect® system.

2. McGraw-Hill connect® system access

You have several options for obtaining these materials:

b. All digital option: Alexander and Sadiku eBook and connect® access (Alexander) card. Purchase access card with eBook when you register for connect® access via the provided registration link (below). Price will be higher if you purchase from the ‘general’ McGraw-Hill website, so use the registration link.

On-Line Homework Student Registration Information:
Course: ECE 2100 Circuit Analysis
Instructor: Damon Miller
Section: Fall 2022

Note that your homework assignments are stored on a non-WMU server. Do not provide confidential information such as your WIN number. If you wish to keep your homework scores anonymous on that server, as far as the instructor is concerned, you do not have to use your wMich.edu email address as your ID; in that case, you may use an alternative ID, but you must notify the course instructor.
Laboratory

Required:
3. J. Kelemen, D. A. Miller, F. L. Severance, S. Durbin, et al., *ECE 2100 Laboratory Manual*. This manual is accessible online as individual links within the course schedule at the end of this document. It is your responsibility to check the manual for updates as the semester progresses.
4. Digital multimeter (or equivalent): DIGITAL MUTLIMETER SKU 01DMMS8269
5. Safety glasses meeting ANSI Z87.1, e.g. SAFETY SPECTACLE - DELUXE: SKU 060373
 Glasses must have side protection.
 Students will not be admitted to the lab without safety glasses.
6. Linear Technology, LTspice®, available at no cost at http://www.linear.com/designtools/software/. This software will be used to simulate circuits. You are responsible for ensuring access to a working copy.

SPICE EXAMPLES

b. CCCS and CCVS example (problem 4.51 from Nilsson and Reidel *Electric Circuits*, 8th ed.)
c. VCVS example (simple operational amplifier model)
d. Chua’s “Simple” Chaotic Circuit (need the National Semiconductor LM741 model available as part of laboratory six in the course schedule below.

7. You must maintain a laboratory notebook (permanently bound, not loose leaf, 8.5 inches x 11 inches, 60 pages minimum, quadrille ruled, each page has a square grid, no carbon paper pages) to record your laboratory work. Use a pen to record your work (not a pencil); simply cross-out, but do not obliterate, mistakes. This National Engineering and Science Notebook is a good choice.

8. Ruler
9. Calculator
10. Bring your text to lab.

References (also see course schedule):

Recommended:

1. The Rose-Hulman Institute of Technology has an excellent interactive “Circuits Learned by Example Online” website that includes mini-lectures on how to work many types of circuit analysis problems: http://www.rose-hulman.edu/CLEO/

COURSE POLICIES

Academic Honesty

General:

Students are responsible for making themselves aware of and understanding the University policies and procedures that pertain to Academic Honesty. These policies include cheating, fabrication, falsification and forgery, multiple submission, plagiarism, complicity and computer misuse. The academic policies addressing Student Rights and Responsibilities can be found in the Undergraduate Catalog at http://catalog.wmich.edu/index.php?catoid=35 and the Graduate Catalog at http://catalog.wmich.edu/index.php?catoid=39. If there is reason to believe you have been involved in academic dishonesty, you will be referred to the Office of Student Conduct. You will be given the opportunity to review the charge(s) and if you believe you are not responsible, you will have the opportunity for a hearing. You should consult with your instructor if you are uncertain about an issue of academic honesty prior to the submission of an assignment or test.

Students and instructors are responsible for making themselves aware of and abiding by the “Western Michigan University Sexual and Gender-Based Harassment and Violence, Intimate Partner Violence, and Stalking Policy and Procedures” related to prohibited sexual misconduct under Title IX, the Clery Act and the Violence Against Women Act (VAWA) and Campus Safe. Under this policy, responsible employees (including instructors) are required to report claims of sexual misconduct to the Title IX Coordinator or designee (located in the Office of Institutional Equity). Responsible employees are not confidential resources. For a complete list of resources and more information about the policy see http://www.wmich.edu/sexualmisconduct.

In addition, students are encouraged to access the Code of Conduct, as well as resources and general academic policies on such issues as diversity, religious observance, and student disabilities:

- Office of Student Conduct http://www.wmich.edu/conduct
- Division of Student Affairs http://www.wmich.edu/students/diversity
- Registrar’s Office http://www.wmich.edu/registrar/calendars/interfaith
- Disability Services for Students http://www.wmich.edu/disabilityservices.

Plagiarism: For an in-depth exploration of plagiarism, see http://libguides.wmich.edu/plagiarism

Accommodations

If you have a documented disability and verification from the Disability Services for Students (DSS), and wish to discuss academic accommodations, please contact your instructor as soon as possible. It is the student’s responsibility to provide documentation of disability to DSS and meet with a DSS counselor to request special accommodation before classes start. If DSS accommodations include extended examination times, make appointment(s) to take the exam(s) at DSS either at or one hour prior to the scheduled exam time. Make appointment(s) as soon as possible as time slots fill quickly. If this arrangement is not possible, immediately see the instructor. ADDED 10/31/2022.

Grading Basis

1. Examinations (2 in-semester exams plus final): 60%
 Final counts as two in-semester exams.
 Due to the class size requests for examination rescheduling cannot be approved though religious observances will be accommodated with advanced notice.
2. Homework and Quizzes (announced and unannounced): 10%
 There are unlimited submission attempts for the online homework assignments; the highest grade is used.
3. Laboratory: 30%
 Students earning less than 70% in the lab will be assigned an ‘E’.

OUTSTANDING WORK might earn extra credit. The first student to report an error in any material prepared by the instructor(s) will earn extra credit. The course grading scale is:

Scale: 0-59 E | 60-64 D | 65-69 DC | 70-74 C | 75-79 CB | 80-84 B | 85-89 BA | 90-100 A |
Numeric scores are rounded to the nearest integer.

A grade of ‘X’ will be assigned to any student that earns an ‘E’ and does not complete all examinations including the final.

Midterm grades are not assigned.

Viewing Grades
Homework grades are available via the McGraw-Hill connect® website. It is your responsibility to monitor your online scores to insure you received proper credit.

Grade Appeals
If you have a question regarding graded course materials (e.g. exam problems, homework problems, laboratory reports, etc.), contact Dr. Miller within TWO business days of receiving the grade for the assignment in question.

Late Assignments will not be accepted without a documented excuse. If an emergency prevents you from submitting an assignment on-time, contact your instructor PRIOR to the assignment due date or as soon as you can, via email. Failure to adhere to this policy will result in zero credit for the assignment.

EXAMINATIONS will be closed-notes closed-book. All electronic devices, including watches, must be stowed away. You must have a WMU issued ID with you at the exam. If you observe an apparent incident of academic misconduct, please confidentially alert the course instructor.
Students that exit the exam area during the examination period may not resume taking the exam upon their return. Please address any personal issues prior to the exam session.

Only under extremely unusual circumstances will make-up examinations be considered. If an emergency prevents you from attending a scheduled examination or quiz, contact Dr. Miller via email PRIOR to the test or as soon as you can. Failure to adhere to this policy will result in zero credit for the exercise.

LABORATORY
Lab attendance is mandatory.

Students must successfully complete the laboratory safety quiz prior to performing any ECE 2100 experiments. Any indication of failure to follow safe laboratory procedures will result in removal from the lab and course failure.

Only under extremely unusual circumstances will make-up laboratories be considered. Religious observances will be accommodated with advanced notice. If an emergency prevents you from attending a laboratory or arriving on-time, contact your lab instructor via email PRIOR to the lab or as soon as you can. Failure to adhere to this policy will result in zero credit for the lab. Joining or arriving late to lab (i.e. after the posted start time) without a valid excuse may result in zero credit for that lab. There is no obligation to provide makeup lab sessions for unexcused tardy or absent students. Students must obtain email approval from Dr. Miller prior to making up a lab.

Grading Basis
Your laboratory grade will be determined using the following evaluation criteria:

1. Pre-lab quizzes (20%). Quizzes are closed book; however, you may use your laboratory notebook on quizzes. Potential sources of quiz questions include previous labs and the current pre-lab assignment and may require calculations.

2. Lab reports (80%).
 a. Unless otherwise noted, each lab team submits one report.
 ECE 2100 LABS ARE COMPLETED INDIVIDUALLY OR IN TEAMS OF TWO.
 No three-person teams.
 b. **USE A WHITE BACKGROUND FOR ALL LTspice® schematics and waveform plots.** Reports must not be handwritten, though you must include copies of your hand-written lab notebook as an appendix.
 c. It is essential that whenever possible hand analysis, simulation, and experimental results be presented side-by-side (using tables or graphs) and errors between these results be quantitatively described. Explain discrepancies.
 d. Whenever possible, present your results in graphical form. One approach is to plot hand analysis and experimental results on top of graphs obtained via simulation. Plot the independent variable along the abscissa and dependent variable(s) along the ordinate. **Do not ‘connect-the-dots,’ that is, do not connect experimental points with “best-guess” curves unless there is a valid reason for doing so.**
 e. Tables are another effective method of organizing and presenting results.

Your lab report describes ALL OF YOUR LAB WORK and is a STAND-ALONE DOCUMENT, including any LTspice® schematics/results (those can be pasted from LTspice® into a document editor by using “Tools->Copy bitmap to Clipboard”). The lab report is organized as follows. Use separate section headings for each item.

1. **Title page**
ECE 2100 Laboratory Report

Title of Experiment
Date Laboratory was Performed

Name of Laboratory Instructor
Day/Time of your lab section

2. **Summary (on separate page):** Brief but complete statement of what you did.

 Example:
The complex power of a series-connected ??? Ω resistor (R) and ??? H inductor (L) operating at 60 Hz was investigated. The complex power was determined to be 100 + 100j VA by hand analysis and simulation. Addition of a ??? uF capacitor connected in parallel to the RL load resulted in a unity power factor in both hand analysis and simulation work.

3. **Prelab:** Include the prelab results here after correcting any errors. Whenever possible present results in tabular form. If there is not a prelab assignment include simply indicate N/A in this section. Only one prelab per report, even if the prelab was completed individually.

4. **Results:**
 a. Present your results keyed to each step of the laboratory procedure.
 Include schematics, sketches, plots, etc.
 b. Describe what was done and document your results.

5. **Analysis:** Provide response(s) to any end-of-lab questions. If none simply indicate N/A in this section. Only one analysis section per report.

6. **Contributions:** List the contributions of each team member to completion of the experiment and report.

7. **Conclusions:** Describe lessons learned.

8. **Lab Notebook:** Attach the related lab notebook pages as an appendix FOR EACH TEAM MEMBER. Team members with poor notebook entries will be penalized.

Style
Observe proper sentence structure, spelling, and punctuation. Use third person, passive voice. Avoid repetition, the obvious, abstractions, and wordiness.

Submission
Unless otherwise noted, each lab team submits ONE PDF report and ONE ZIP file containing supporting files; only one team member submits these two items.

1. Submit your REPORT as a single PDF file to your lab instructor’s ELearning Dropbox by the indicated due date for that lab. Name the file as follows:

 “LastNameFirstName_Report_Lab#_SessionDayAndTime”; for example,
 DoeJane_Report_Lab8_R830.pdf

 is Jane Doe’s report submission for her Thursday 8:30 lab team for Lab 8. The lab report is a
stand-alone document and includes all of your work, including LTspice® schematics and simulation results.

2. Submit all SUPPORTING FILES (e.g. ALL LTspice® files) used in your lab work to your lab instructor’s ELearning Dropbox by the indicated due date for that lab as a single ZIP file. Name the file as follows:

“LastNameFirstName_SPICE_Lab#_SessionDayAndTime”; for example, “DoeJane_SPICE_Lab8_R830.zip”

is Jane Doe’s supporting files submission for her Thursday 8:30 lab group.

Submissions not following these instructions will not be accepted.

3. Lab notebook (part of lab reports grade) You must also maintain a laboratory notebook. Lab notebooks provide a convenient and professional method of organizing and storing your lab work and records. Your laboratory notebook will be evaluated for neatness, organization, technical accuracy, and completeness as part of your lab report submission. Specific guidelines for the notebook will be provided in the laboratory.

Each laboratory must be initialed by the lab instructor. Signatures will be made in only two cases:
 a. The laboratory is complete including the results section (LAB COMPLETE signature);
 b. The lab session is over (IN PROGRESS signature). For this case a second LAB COMPLETE signature is required by the end of the next lab session.

Lab reports without signed-off notebook pages will not be accepted.

HOMEWORK

Homework assignments are via the online McGraw-Hill connect® system. Due dates are posted in the course schedule. It is your responsibility to monitor your online homework scores to ensure that you have received proper credit.

If you believe that there is an error in an online problem solution, submit that problem to Dr. Miller before the assignment due date via email. Include complete documentation (e.g. circuit diagrams) and a printout of the online solution with error(s) identified. Clearly show how you arrived at your solution. If there is an online homework system problem that precludes you from an on-time assignment submission, contact the instructor prior to when the assignment is due.

Tentative Course Schedule
The schedule will be frequently updated as the semester progresses.

Yellow highlight indicates item requiring future attention

<table>
<thead>
<tr>
<th>#</th>
<th>date</th>
<th>topic (KEYED TO ELEARNING MODULE NUMBER)</th>
<th>assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEK 1</td>
<td></td>
<td>NO LAB MEETING (COMPLETE THE LAB SAFETY MODULE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Read ECE 2100 Laboratory: Safety and Rules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECE 2100 Laboratory: Notebook Requirements</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>View lecture #6 on electrical laboratory safety on ELearning (in Fundamental Concepts module)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complete and submit the SAFETY QUIZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DUE BY 9/9 5PM to lab instructor ELearning Dropbox</td>
<td></td>
</tr>
</tbody>
</table>
Course Overview

1. Course welcome, overview, and syllabus review
2. How to succeed in this course
3. What engineers do
 (and engineering design vs. engineering analysis)
4. "Greatest Engineering Achievements of the 20th Century"
5. Overview of electrical engineering
 IEEE Societies

Fundamental Concepts

6. Electrical laboratory safety (and lab notebook requirements)
7. What is a circuit?

WEEK 2

NO LAB MEETING

COMPLETE LAB 1 INDIVIDUALLY AT HOME

You can seek help during any lab instructor lab meeting times or office hours.

LAB 1: Passive Sign Convention and LTspice® Introduction (SIMULATION ONLY)

REPORT DUE BY 9/16 5PM to lab instructor ELearning Dropbox

Each student submits a report (no lab teams).

Submit your lab notebook pages as your report (one per person). No other documentation is required.

WEEK 3

LAB 2: Basic Circuit Measurements and Ohm’s Law

REPORT DUE BY 9/23 5PM to lab instructor ELearning Dropbox

WEEK 4

LAB 3: Series and Parallel Circuits

REPORT DUE BY 9/30 5PM to lab instructor ELearning Dropbox
<table>
<thead>
<tr>
<th>9</th>
<th>9/21</th>
<th>Design of DC Meters (2.8.2)</th>
<th>HW #2 DUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>24. Meter sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25. Nodal Analysis (3.2)(also 3.3)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9/23</td>
<td>Nodal and Mesh Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>26. Nodal Analysis (3.2)(also 3.3)</td>
<td></td>
</tr>
</tbody>
</table>

WEEK 5

LAB 4: **Basic DC Meter Design**
REPORT DUE BY 10/7 5PM to lab instructor ELearning Dropbox.
Remember to include the Ammeter/Voltmeter Performance Evaluation Worksheet as the last page of your report.
EACH student must also submit a Laboratory Team Self-Assessment FORM to receive credit for this report. DO NOT include this form as part of the report in order to maintain confidentiality. Rather, submit in the SEPERATE Team Assessment Dropbox.

11	9/26	26. Mesh Analysis (3.4)(also 3.5)	HW #3 DUE
		27. Nodal and Mesh Analyses by Inspection (3.6)	
		28. Comparing nodal and mesh analysis (3.7)	HW #5: (CH 4) DUE 10/10
12	9/28	**Circuit Theorems** (CH 4)	
		29. Source Transformation (4.4)	
13	9/30	30. Linear systems (4.2)	LAB 3 REPORT DUE
		31. Superposition (4.3)	Read CH 5: **Operational Amplifiers**

WEEK 6

LAB 5: **Nodal and Mesh Analysis: Comparison of Analysis, Simulated, and Experimental Results**
REPORT DUE BY 10/14 5PM to lab instructor ELearning Dropbox.

14	10/3	**Superposition** (4.3)	HW #4 DUE
		32. Thevenin equivalent circuits (4.5)	
15	10/5	33. Negative resistance	
		34. Norton equivalent circuits (4.6)	
		35. Maximum Power Transfer (4.8)	
16	10/7	**Operational Amplifiers** (CH 5)	LAB 4 REPORT DUE
		36. Ideal Op Amp (5.3)	HW #6: (CH 5) DUE 10/28
		37. Internal circuitry of LM741 op-amp	
		LM741 Operational Amplifier Datasheet	
		Chip Hall of Fame: Fairchild Semiconductor uA741 Op-Amp	
		38. Inverting and non-inverting configurations (5.4, 5.5)	

WEEK 7

LAB 6: **Superposition and Thevenin’s Theorem**
REPORT DUE BY 10/24 5PM to lab instructor ELearning Dropbox.

17	10/10	39. Non-inverting amplifier as negative feedback system	HW #5 DUE
		40. Operational amplifier applications: buffer amplifier	
		41. Operational amplifier applications: voltmeter w/ meter movement	
		42. Operational amplifier applications: I-V converter	
18	10/12	43. Operational amplifier applications: Summing Amplifier (5.6)	Read CH 6: **Capacitors and Inductors**
		44. Operational amplifier applications: Difference Amplifier and Common Mode Rejection Ratio (CMRR)	
		45. Operational amplifier applications	
		(a) Instrumentation amplifier (Example 5.8)	NovaSensor NPC-1220 Series Medium Pressure Sensors

© 2022 Damon A. Miller. All rights reserved.

(b) V-I converter using diff amp: Essenburg, Lucas M., "Intracellular Electrometer" (2019). Master's Theses: https://scholarworks.wmich.edu/masters_theses/5099

Dr. John Jellies Laboratory

<table>
<thead>
<tr>
<th>QUIZ #1</th>
<th>LAB REPORT 5 DUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAM 1 REVIEW</td>
<td></td>
</tr>
<tr>
<td>Covers CHs 1-4</td>
<td></td>
</tr>
<tr>
<td>NOTE: Sample exams are for practice only; your exam might not look anything like these!</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2015</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Summer I 2015</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2015</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2016</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2016</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2017</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Summer I 2017</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2017</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2018</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2018</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2019</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Summer I 2019</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2019</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2020</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Fall 2021</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Spring 2022</td>
<td></td>
</tr>
<tr>
<td>Exam #1 Summer I 2022</td>
<td></td>
</tr>
</tbody>
</table>

WEEK 8

NO LAB

20 10/17 EXAM 1
(no calculators, bring WMU ID)

10/19 NO CLASS: Fall Break

10/21 NO CLASS: Fall Break

WEEK 9

LAB 7: [Basic Waveforms and Oscilloscope Operation](#)
REPORT DUE BY 11/4 5PM to lab instructor ELearning Dropbox

<table>
<thead>
<tr>
<th>21</th>
<th>10/24</th>
<th>HW #7 (CH 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review graded Exam #1</td>
<td>DUE 11/4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>10/26</td>
<td>Read CH 9: Sinusoids and Phasors</td>
</tr>
<tr>
<td>Capacitors and Inductors (CH 6)</td>
<td>Read Appendix B: Complex Numbers</td>
<td></td>
</tr>
<tr>
<td>46. Sinusoids (9.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 10/28</td>
<td>QUIZ #2</td>
<td>HW #6 DUE</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Capacitance (6.2, 6.3): Sinusoidal Excitation/Equivalent Capacitance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48. Electronic integrators/differentiators (6.6.1, 6.6.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analog Computer (6.6.3, Example 6.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49. Supercapacitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Salerno, “Low Profile Supercapacitor Power Backup with Input Current Limiting,” LT Journal of Analog Innovation, Nov. 2015:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEK 10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB 8: Operational Amplifier Circuits</td>
<td>HW #8: (CH 9) DUE 11/11</td>
</tr>
<tr>
<td>NationalSemiconductorModels.lib (This is a text file with a circuit model of the LM741 from National Semiconductor. Right click on the link and save the file OR open the file in your browser and save the file in the same directory as your LTspice® schematic. Put the SPICE directive <code>*.include NationalSemiconductorModels.lib</code> in your schematic. This is accomplished via the text tool). REPORT DUE BY 11/11 5PM to lab instructor ELearning Dropbox</td>
<td></td>
</tr>
</tbody>
</table>

LAST DAY TO WITHDRAW

<table>
<thead>
<tr>
<th>24 10/31</th>
<th>VIEW LECTURES 51-52 ON eLEARNING:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HW #8: (CH 9) DUE 11/11</td>
</tr>
<tr>
<td></td>
<td>Triad Dual-Function Chokes</td>
</tr>
<tr>
<td></td>
<td>Coilcraft BCL/BCR Series Conical Inductors</td>
</tr>
<tr>
<td></td>
<td>51. Ideal transformers (13.5)/applications (13.9.3 Power Distribution, Parkview Campus transformer failure) Transformers, The Unsung Technology</td>
</tr>
<tr>
<td></td>
<td>United States Electricity Industry Primer</td>
</tr>
<tr>
<td></td>
<td>(see page 22 for figure used in class)</td>
</tr>
<tr>
<td></td>
<td>Mill Creek Generating Station</td>
</tr>
<tr>
<td></td>
<td>(1465MW Generation Capacity, Dr. Miller worked there as an intern)</td>
</tr>
<tr>
<td></td>
<td>Technical details available here</td>
</tr>
<tr>
<td></td>
<td>Parkview Campus Transformer Failure</td>
</tr>
<tr>
<td></td>
<td>Details courtesy Dan Brimmer/Lucas Essenburg</td>
</tr>
<tr>
<td></td>
<td>U.S. electricity generation by energy source (updated to 2019)</td>
</tr>
<tr>
<td></td>
<td>52. Mutual Inductance (13.2)</td>
</tr>
<tr>
<td></td>
<td>Sinusoids and Phasors (CH 9)</td>
</tr>
<tr>
<td></td>
<td>53. Importance of sinusoids in engineering</td>
</tr>
</tbody>
</table>

© 2022 Damon A. Miller. All rights reserved.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 11 | 25/11/2 | Importance of sinusoids in engineering | Read CH 10: Sinusoidal Steady-State Analysis
| | 54. Introduction to phasors (9.3)
55. Passive circuit elements in the phasor domain (9.4) | |
| | 26/11/4 | Passive circuit elements in the phasor domain (9.4) | HW #7 DUE
56. Impedance and Admittance (9.5)
57. Analysis of circuits in the sinusoidal steady state using phasors: (9.6): RL example
DISCUSS LAB 9 SETUP
Grounding of electric equipment (not on ELearning) |
| | 27/11/7 | Analysis of circuits in the sinusoidal steady state using phasors: RLC example, KVL and KCL in phasor domain | HW #9: (CH 10, 11)
58. Equivalent impedance (9.7)
59. Resonance in parallel RLC circuit
60. Using resonant LC circuit to tune a radio |
| | 28/11/9 | RC low and high-pass filters/Application to speaker crossover network | HW #8 DUE
Circuit Analysis in the Phasor Domain
61. Circuit analysis in the phasor domain (10) |
| | 29/11/11 | |
| | 30/11/14 | Circuit analysis in the phasor domain (10)
(Additional worked examples are available in ELearning)
63. Capacitance Multiplier (10.9.1) |
AC Power Analysis
64. Root Mean Square Value (11.4) |
| | 31/11/16 | Root Mean Square Value (11.4) |
65. Instantaneous and Average Power (11.2)
66. Complex Power (11.6)
67. Power Factor Correction (11.8) |
| | 32/11/18 | Q in the time domain: theory and simulation
69. Maximum Average Power Transfer (11.3)
VIEW LECTURES 70-71 ON eLEARNING:
70. Impedance matching w/t transformer (13.9.2)
71. Resonance w/radio tuning (online ELearning video lecture includes show-and-tell) |
First-Order Circuits (CH 7)
72. Steady-state vs. transient analysis
73. Natural response (RC)(7.2)
74. Natural response (RL) (7.3) |
| | 31/11/16 | Root Mean Square Value (11.4) |
65. Instantaneous and Average Power (11.2)
66. Complex Power (11.6)
67. Power Factor Correction (11.8) |
| | 32/11/18 | Q in the time domain: theory and simulation
69. Maximum Average Power Transfer (11.3)
VIEW LECTURES 70-71 ON eLEARNING:
70. Impedance matching w/t transformer (13.9.2)
71. Resonance w/radio tuning (online ELearning video lecture includes show-and-tell) |
First-Order Circuits (CH 7)
72. Steady-state vs. transient analysis
73. Natural response (RC)(7.2)
74. Natural response (RL) (7.3) |

WEEK 12
LAB 10: Frequency and Intuitive Step Response of RC Filters
REPORT DUE 12/2 5PM to lab instructor ELearning Dropbox.
Remember to include the RC Low Pass Filter Design Worksheet as the last page of your report.
EACH student must also submit a Laboratory Team Self-Assessment FORM to receive credit for this report. DO NOT include this form as part of the report in order to maintain confidentiality. Rather, submit in the SEPERATE Team Assessment Dropbox.
LAB REPORT 9 DUE
LAB REPORT 10 DUE

WEEK 13
NO CLASS: Thanksgiving Break
QUIZ #3

EXAM 2 REVIEW
Covers all material except CH 7 and 8

NOTE: Sample exams are for practice only; your exam might not look anything like these!
(no calculators, bring WMU ID)

- Exam #2 Spring 2015
- Exam #2 Summer I 2015
- Exam #2 Fall 2015
- Exam #2 Spring 2016
- Exam #2 Fall 2016
- Exam #2 Spring 2017
- Exam #2 Summer I 2017
- Exam #2 Fall 2017
- Exam #2 Spring 2018
- Exam #2 Fall 2018
- Exam #2 Spring 2019
- Exam #2 Summer I 2019
- Exam #2 Fall 2019
- Exam #2 Fall 2021
- Exam #2 Spring 2022
- Exam #2 Summer I 2022

34 11/23 EXAM 2
(no calculators, bring WMU ID)

WEEK 14

LAB 11: AC Power Factor and Power Factor Correction

REPORT DUE 12/9 5PM to lab instructor ELearning Dropbox.

35 11/28

75. Singularity Functions (7.4)
76. Step response (RC)(7.5)
77. Step response (RL)(7.6)

36 11/30

78. General solution for effects of initial condition and switched DC sources (pg. 298)

Second-Order Circuits (CH 8)
79. Series RLC natural response (8.3)

37 12/2

80. Series RLC step response (8.5), including unstable response for negative resistance
81. Parallel RLC step response (8.6)
82. General Second Order Circuits (8.7)

LAB REPORT 10 DUE

Mathematica® notebook based on Ex. 8.7 of the text is available [here](#).

WEEK 15

LAB 12: Step Response of an RC Circuit
LAB 13: Step Response of an RLC Circuit

ABBREVIATED LAB REPORT DUE 12/9 5PM to lab instructor ELearning Dropbox.

Submit one lab report for Labs 12 and 13. The lab report consists ONLY of a cover page; Table 1 from Lab 12; and the pre-lab and lab notebook pages for Lab 13.

38 12/5

Advanced Topics
83. Nonlinear chaotic Chua’s Circuit

Simulate Chua’s Circuit. The LTspice® file is available via a link in this syllabus.
QUIZ #4

Final Exam Review
NOTE: Sample exams are for practice only; your exam might not look anything like these!
- Final Exam Spring 2015
- Final Exam Summer I 2015
- Final Exam Fall 2015
- Final Exam Spring 2016
- Final Exam Fall 2016
- Final Exam Spring 2017
- Final Exam Summer I 2017
- Final Exam Fall 2017
- Final Exam Spring 2018
- Final Exam Fall 2018
- Final Exam Spring 2019
- Final Exam Summer I 2019
- Final Exam Fall 2019
- Final Exam Fall 2021
- Final Exam Spring 2022
- Final Exam Summer I 2022

WEEK 16

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 40 12/9 | Review graded Exam #2
Course wrap-up
Accelerated master’s programs
Encourage instructor evaluation participation |
| 41 TUE 12/13 | FINAL EXAM (cumulative)
10:15AM-12:15PM
(no calculators, bring WMU ID)
Verify date/time on your own.
Cumulative |

LAB REPORT 11 DUE
LAB REPORT 12/13 DUE
HW #10 DUE